
Quick R Primer

June 20, 2013

This document is a brief summary of the main R data types and some useful commands.

0.1 Arithmetic

When you start up R, you see a welcome message and the prompt >. In my version of R, the text is in blue and
the prompt and cursor appear in red. You can type commands at the prompt which R will interpret. For
example, if you type 2 + 3 and press return, your R session will look like this:

> 2 + 3

[1] 5

>

The [1] in the output indicates that 5 is the �rst entry of the vector 2 + 3. This is explained further below.
Examples of other arithmetic operations are �, �, = and ^. Brackets can be used to group operations. For
example, 2^(1 + 1) returns 4 (2 to the power of 1+1.) Note that the amount of whitespace typed on either side
of the operator doesn't matter, so that 2+3 is the same as 2+ 3 or 2 + 3.

0.2 Variables

You can create a variable and assign it a value by using the assignment operator <-. For example, the command

x <- 2

assigns the value 2 to the newly-created variable x. You can also use = to assign values, as in most programming
languages, but this is not recommended because there are obscure situations in which it can fail.

Variable names in R are case-sensitive, so that X is not the same as x.

When you assign a value to a variable, R will not react. When you type the name of a variable, it will print out
the value assigned to that variable, if it exists. Putting brackets around a variable assignment will cause R to
print the value at the same time as it is assigned. An example R session might look like this.

> y

Error: object y not found

> y <- 2

> y

[1] 2

> (z <- 3)

[1] 3

>

Many other things can be created in R besides numbers. In general, these are called objects. An object of any
type can be assigned to any variable. In other words, you can give an object any name you like.

1

0.3 Vectors

A vector is an ordered sequence of numbers. A vector in R can be produced using c, which stands for
concatenation. For example:

> x <- c(2,3)

> x

[1] 2 3

Here, we created a vector x containing the values 2 and 3, and then looked at it. To look at the �rst entry by
itself, type x[1] and to look at the second entry, type x[2]. This is why the [1] appears when R displays a
vector; it is next to the entry which is x[1]. Note that the entries are numbered starting with 1, not 0, unlike
many other programming languages.

Trying to access an element which doesn't exist does not give an error. Instead, R returns NA, which represents a
missing value. Negative indices have a di�erent meaning. Typing x[-1] returns x with entry 1 deleted. Similarly,
typing x[-5] deletes the �fth entry. Trying to delete an entry which does not exist does not give an error; if there
is no �fth entry, then x[-5] is the same as x.

> x <- c(2,3)

> x[2]

[1] 3

> x[-1]

[1] 3

> x[5]

[1] NA

> x[-5]

[1] 2 3

Vectors can be produced in di�erent ways. One common way to de�ne a vector is to use the colon operator. The
command a:b creates a vector containing the numbers going from a to b in steps of size 1.

> 1:4

[1] 1 2 3 4

> 4:1

[1] 4 3 2 1

The command seq(a, b, r) produces a vector from a to b going in steps of size r.

> seq(0, 1, 0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

New vectors can be constructed by concatenating old ones using c.

> y <- c(1:3, x, -0.8)

> y

[1] 1.0 2.0 3.0 2.0 3.0 -0.8

Note that vectors can also be indexed by other vectors. For example, to create a vector containing the �rst and
third entries of y, you can type y[c(1, 3)] instead of c(y[1], y[3]).

0.4 Vector arithmetic

Arithmetic operations are performed entrywise on vectors.

> c(-1,2) * c(3,4)

[1] -3 8

2

Operations such as addition and multiplication can be performed on vectors of di�erent lengths. This is very
useful, but can be confusing if you are familiar with linear algebra. When an operation is performed on two
vectors of di�erent lengths, the shorter one is recycled to have the same length as the longer one. So, for example,
if you type

c(2, 3) + c(1, 2, 3, 4, 5)

R will �rst replace c(2, 3) by c(2, 3, 2, 3, 2) and then perform the addition, to obtain

[1] 3 5 5 7 7

Other arithmetic operations also work componentwise on vectors.

> c(2, 7) * c(2, 4, -2)

[1] 4 28 -4

> (1:3)^2

[1] 1 4 9

Scalars (i.e. numbers) are really vectors of length one, so multiplying a vector by a scalar works in the way you
would expect. Adding a scalar to a vector adds the scalar to each entry of the vector, in accordance with the
recycling rule.

There are many useful vector functions built into R. For example, if x is a vector,

length(x)

gives the number of entries of x and

rev(x)

reverses the entries of x. It is important to note that applying a function to an object in R never changes the
object itself. For example, if x is c(1,2,3), then typing rev(x) produces c(3,2,1), but x itself is not changed. If
you want to reverse the entries of x and store the result in x then you can type

x <- rev(x)

0.5 Matrices

A matrix can be constructed using the matrix command. The user has to supply a vector of entries of the matrix
and the number of rows and columns.

> X <- matrix(1:4, nrow=2, ncol=2)

> X

[1,] [2,]

[1,] 1 3

[2,] 2 4

This can be abbreviated to

> X <- matrix(1:4, 2, 2)

or you can also specify just one of nrow or ncol, since the other is determined by the length of the vector 1:4.
Notice that matrices are stored in column-major order by default. If

X <- matrix(v, nrow=nrow, ncol=ncol)

is a matrix, then the �rst nrow entries of v form the �rst column of the matrix X. To create a matrix in row-major
order, either use the byrow=TRUE option

3

X <- matrix(1:4, nrow=2, ncol=2, byrow=TRUE)

or use the transpose t.

X <- t(matrix(1:4, nrow=2, ncol=2))

An entry of a matrix can be picked out in the same way as with vectors, except that now you must specify both
the row and the column.

> X <- (matrix(c(1,2,1,3,2,3), nrow=2, ncol=3)

> X[2,3]

[1] 3

A row or column of the matrix can be picked out by omitting one of the numbers. For example, X[1,] returns the
�rst row and X[,2] returns the second column. But notice that individual row and columns are always returned
as vectors. If you want them to be 1� n or n� 1 matrices, you can add a drop=FALSE to the command.

> X <- matrix(1:4, 2,2)

> X[,2]

[1] 3 4

> X[,2 ,drop=FALSE]

[,1]

[1,] 3

[2,] 4

R regards a matrix X as a vector plus a pair of numbers giving the number of rows and columns. This pair of
numbers is called the dimension of X and can be obtained by typing dim(X). The default behaviour when picking
out a single row or column is to \drop" the dimension attribute. Including drop=FALSE tells R not to drop the
dimension attribute. Attributes are discussed further in Section 0.13.

Multiplication of matrices happens entrywise, just like with vectors. But the matrices have to be of the same
dimensions, or R will give an error. Other binary operations, such as addition and division, work on matrices in
the same way. If you want to do the usual matrix multiplication, use the operator %*% instead of *.

> X <- matrix(1:4, 2,2)

> Y <- matrix(5:8, 2,2)

> X * Y

[,1] [,2]

[1,] 5 21

[2,] 12 32

> X %*% Y

[,1] [,2]

[1,] 23 31

[2,] 34 46

The operator %*% can also be used to do matrix-vector multiplication. For example, to �nd the result of
subtracting the second column of Y from the �rst column.

> v <- c(1,-1)

> Y %*% v

[,1]

[1,] -2

[2,] -2

Matrices and vectors can be combined using the binary operations we have already seen. The matrix is
temporarily treated as a vector, and the result inherits the dimension of the matrix. This may result in a warning
message if the length of the vector does not match the number of entries in the matrix. It is easier to explain via
examples.

4

> 2*X

[,1] [,2]

[1,] 2 6

[2,] 4 8

> c(1,2,3)*X

[,1] [,2]

[1,] 1 9

[2,] 4 4

Warning message:

In c(1, 2, 3) * X :

longer object length is not a multiple of shorter object length

In the second example, �rst c(1,2,3) was recycled to c(1,2,3,1) and then the product

c(1,2,3,1) * c(1,2,3,4)

was computed. The result was �nally placed in a 2� 2 matrix.

Special cases of this behaviour are: adding a scalar a to a matrix X adds a to each entry of X; multiplying a matrix
X by a scalar a multiplies each entry of X by a. Neither of these operations gives a warning message because they
are so commonly used.

0.6 Strings

A string is a piece of text. Strings can be enclosed in single or double quotes and can contain special characters
called escape characters such as nn (newline) nt (tab) and n" (double quotes). Typing the name of a string in the
console causes it to be printed out. A string s can also be printed using print(s).

> me <- "Tarzan"

> you <- "Jane Porternn"
> me

[1] "Tarzan"

> print(you)

[1] "Jane Porternn"

The [1] appears in the output because me and you are really regarded as vectors of strings which happen to have
length one.

Another function for printing strings is cat(). This function does not print the contents of the string literally; it
interprets the escape characters in the string. The name cat comes from the fact that you can give it more than
one string as an argument and the arguments will be concatenated.

> cat(you)

Jane Porter

> cat("me", me)

me Tarzan>

Notice that there is no new line because the string did not include the nn character. To concatenate and print
strings without a space in between, the sep argument can be used.

cat("alpha", "bet", sep="")

One use of strings is to give names to a vector. Names can be assigned to a vector using names.

> heights <- c(1.98, 1.69, 1.1)

> names(heights) <- c("Tarzan", "Jane", "chimp")

> heights

Tarzan Jane chimp

5

1.98 1.69 1.10

You can now refer to the second entry of heights using heights[2] or heights["Jane"]. In either case, the
output will be:

Jane

1.69

Note that you can create vectors of strings, like names(heights) in this example. Arithmetic operations are not
de�ned for strings. Instead, there are special functions for manipulating strings. A common one is paste, which is
used to concatenate its arguments into a single string.

> x <- paste("example", "number", sep=" ")

> x

[1] "example number"

(Note that you cannot use cat instead of paste because cat just prints its arguments to the console; it does not
return a value.)

Can a vector contain both strings and numbers?

> c(x, 1)

[1] "example number" "1"

Here, R has coerced the 1 into a string because a vector is not allowed to contain objects of di�erent types. To
combine objects of di�erent types into a single object, you need a list.

0.7 Lists

A list is a collection of objects treated as a single object. A list can be thought of as a vector whose entries are
allowed to contain things of di�erent types, such as strings and numbers. Lists are sometimes called generic

vectors. Ordinary vectors are then called atomic vectors to distinguish them from lists. It is very useful to know
this because R's error messages sometimes use these terms.

Lists are used extensively in R to bundle data together. For example, the function eigen computes the
eigenvalues and eigenvectors of a matrix. It returns a list.

> X <- matrix(1:4, 2, 2)

> e <- eigen(X)

> e

$values

[1] 5.3722813 -0.3722813

$vectors

[,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

The list e consists of a vector and a matrix. The components of the list can be accessed using the $ operator.

> e$values

[1] 5.3722813 -0.3722813

> e$vectors

[,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

> e$vals

NULL

6

Typing e$vals gives NULL because there e has no component called vals. This is analogous to trying to access an
entry of a vector which does not exist, except that NULL is mysteriously di�erent to NA.

You can also access the entries of a list by numbers enclosed in double brackets. For example, e[[1]] is equivalent
to e$values and e[[2]] is equivalent to e$vectors in this example.

To create your own list, you can use the list function. For example

gull1 <- list(species="herring", wingspan=20)

creates a list gull1 containing a string gull1$species and a number gull1$wingspan.

R provides some useful functions for working with lists, but it is not usual to do arithmetic with them, unlike with
vectors. They are most useful for bundling a lot of data together. For example, suppose you write a function to
carry out some statistical procedure. You might want the output of the function to consist of the result plus some
diagnostic information, such as a p{value from an appropriate hypothesis test. It would be sensible to make the
output of this function a list. Most of R's statistical functions work this way. The lm function for linear regression
is an example.

x <- seq(0, 1, length=50)

y <- 5 * x + 1 + rnorm(50)

result <- lm(y~x)

result

The above lines of code create a vector x containing 50 numbers from 0 to 1. The vector y consists of 5*x+1 plus
a vector of random numbers drawn from the normal distribution with mean 0 and standard deviation 1. Then y is
regressed on x and the result is stored in result. Finally, typing result causes result to be printed.

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.9588 5.0429

(The numbers 0.9588 and 5.0429 will di�er from the numbers you get if you copy and paste the code into an R
session because the rnorm function generates random numbers.)

Notice that the output from printing result to the console does not look like the output from the list e that was
seen above. How do we know that result is a list, and what does it contain? You can see the contents of any R
object x by typing str(x). In this case, typing str(result) gives a description of what is in result. In
particular, the �rst line of output tells us that result is a list of 12 objects. Some of these objects, for example
result$qr, are themselves lists.

Why doesn't typing result tell us what is in result? This is because the author of the lm function decided that
it would be more useful if typing result only printed the most relevant information instead of printing everything.
In Section 0.13 we will see that user-de�ned objects can be made to have the same behaviour by using S3 classes.

0.8 Data frames

A data frame is a special kind of list. Essentially it is a list of vectors of the same length. This concept comes
from statistics. A data set in statistics consists of a number of variables measured on some subjects. The vectors
which make up the data frame are supposed to be the measurements of the variables.

For example, suppose we have some seagulls. For each seagull, we record its species, its wingspan in centimetres,
its weight in grams and its sex. A table of the results might look like this.

gull species wingspan weight sex

1 herring 40 850 M
2 herring 38 840 M
3 herring 30 772 F
4 unknown 50 1000 F

7

To create a data frame in R from these data, enter the following command.

seagulls <- data.frame(species=c("herring","herring","herring",NA), wingspan=c(40,38,30,50),

weight=c(850,840,772,1000), sex=c("M","M","F","F"))

Notice that you can copy and paste the command directly into the R console, even though it runs over two lines.
In general, R will accept multi-line input. If you press return before you have �nished typing a command, the
command can be continued on the next line. The prompt will change from > to + to indicate that a command is
being continued.

Printing the seagulls object produces a very similar table to the one displayed above.

species wingspan weight sex

1 herring 40 850 M

2 herring 38 840 M

3 herring 30 772 F

4 <NA> 50 1000 F

The data frame is displayed like a matrix. Remember that it is also a list, so for example seagulls$wingspan
gives the wingspan column. But data frames can also be manipulated using matrix-like syntax. We can also get
the second column by typing seagulls[,2]. Or if we wanted to know just the species and sexes of the �rst three
gulls, we could type

seagulls[1:3, c(1,4)]

to select rows 1 to 3 and columns 1 and 4.

species sex

1 herring M

2 herring M

3 herring F

We can extract the �rst gull with

gull1 <- seagulls[1,]

and we can �nd its weight using either gull1$weight or gull1[3]. So is gull1 a list or a vector? Neither; it's a
data frame, as can be checked by typing str(gull1). (Also, it's technically a list because data frames are a
special case of lists.)

If you are familiar with SQL, data frames should be reminiscent of SQL tables. There are add-on packages for R
which enable data frames to be queried using SQL syntax. R itself also has powerful methods for dealing with
data frames. Some of these will be mentioned in Section 0.10.

Notice something odd which happens if we look at seagulls$sex or seagulls$species in this example.

> seagulls$sex

[1] M M F F

Levels: F M

> str(seagulls$sex)

Factor w/ 2 levels "F","M": 2 2 1 1

Didn't we enter the sexes as c("M","M","F","F")? Shouldn't seagull$sex be a vector of strings? Yes, but now
it is no longer a vector of strings; it has been quietly converted into something else; a factor.

8

0.9 Factors

The idea of a factor comes from experimental designs. Suppose we gave each of six plants a high or low dose of
fertiliser. We could record the doses in a vector of strings.

c("high","high","high","low","low","low")

Or we could give each possible level a code, say 1 for high and 2 for low. Then we could record the doses in a
vector of integers

c(1, 1, 1, 2, 2, 2)

and note that 1 stands for high and 2 stands for low. This is exactly what a factor is. A factor is a vector whose
entries are positive integers in the range 1; 2; : : : ; n, together with a vector of n levels where i stands for level i.

Many R functions take factors as arguments. One obvious question is: why is a factor better than a vector of
strings? This is a very good question, since most of the time there is no harm in working with vectors of strings,
whereas factors can be annoying. One possible reason is that factors are more robust to errors. For example,
consider seagulls$sex. This is a factor of length 4, but you can imagine that we might have a much larger
number of seagulls. Suppose someone wants to change the sex of the �rst seagull and accidentally types D instead
of F.

> x <- seagulls$sex

> x[1] <- "D"

Warning message:

In �[<-.factor�(�*tmp*�, 1, value = "D") :

invalid factor level, NAs generated

R warns us that we entered a code which is not one of the allowed levels and an NA appears in the factor. The
warning can potentially be useful.

On the other hand, working with factors can be a pain. For example, we have seen that creating a data frame
with the data.frame() function causes every string-valued variable to be converted into a factor. This might be
very useful with a variable like sex where there are only a few possible categories, but what if we are inputting
people's addresses? Then everyone basically has a unique value, and it doesn't make much sense to give each
possible address a numeric code.

You can avoid strings being converted into factors by using the stringsAsFactors option when creating a data
frame. Here is an example.

seagulls <- data.frame(species=c("herring","herring","herring",NA), wingspan=c(40,38,30,50),

weight=c(850,840,772,1000), sex=c("M","M","F","F"), stringsAsFactors=FALSE)

This also works with some other functions which create data frames, such as the read.table() function which is
used for reading tables from text �les and storing the result in a data frame.

0.10 Logic

R has two inbuilt constants TRUE and FALSE. An abbreviation for TRUE is T and similarly an abbreviation for
FALSE is F. However, you can also use T and F as variable names, whereas TRUE and FALSE cannot be used as
variable names. When doing logic, it is therefore better to use the names TRUE and FALSE in case you accidentally
overwrite one or both of T or F during your R session.

Vectors of logical values can be created and the binary operators & (and), | (or) and ! (not) are available. They
act componentwise on vectors like the other binary operators we have seen.

> c(TRUE, FALSE) | c(FALSE, FALSE)

[1] TRUE FALSE

> c(TRUE, FALSE) & c(FALSE, FALSE)

[1] FALSE FALSE

> !c(TRUE, FALSE)

[1] FALSE TRUE

9

You can also do arithmetic with logical values, in which case TRUE will be treated as 1 and FALSE as 0. So, for
example, TRUE + TRUE evaluates to 2.

Logical vectors can also be created using the comparison operators >, >=, <, <=, == (a single = cannot be used to
compare two values.)

> x <- c(1, 1, 3, 4, 7)

> x<3

[1] TRUE TRUE FALSE FALSE FALSE

> (x<3)|(x>=4)

[1] TRUE TRUE FALSE TRUE TRUE

Logical vectors can be used for indexing. Recall that if x is a vector, we can write x[c(1,3)] to get a vector
containing the �rst and third entries of x. If we want to get a vector containing those entries of x which satisfy
some condition, we can write x[cond] where cond is the condition. This will produce a vector of those values in x

for which cond evaluates to TRUE.

> x[(x<3)|(x>=4)]

[1] 1 1 4 7

A very useful function related to this is which, which returns the indices for which some speci�ed condition is true.

> which(x < 3)

[1] 1 2

This states that the �rst and second entries of x are less than 3 and the other entries are not less than 3. Notice
that x[which(x < 3)] is the same as x[x < 3].

The same ideas can be used to index matrices and data frames. For example, if X is the 3� 3 matrix
matrix(1:9, 3, 3) then

X[c(FALSE, TRUE, TRUE), c(TRUE, TRUE, TRUE)]

will return the submatrix consisting of the last two rows of X. The second logical vector can be omitted because
typing nothing is equivalent to selecting all rows.

X[c(FALSE, TRUE, TRUE),]

The logical vectors can be obtained by setting conditions on the rows and columns. Here is an example.

> X[X[,1] > 1, X[2,] >= 5]

[,1] [,2]

[1,] 5 8

[2,] 6 9

This command picked out the rows where the �rst column has an entry > 1, which is the last two rows, and the
columns where the second row has an entry � 5, which is the last two columns.

Rows and columns of a matrix whose rows and columns have been named (by using rownames and colnames) can
be referred to by name instead of by number. Similarly, the columns of a data frame can be referred to by name
and indexed in the same way as matrices.

Going back to the seagulls data frame of Section 0.8, suppose we wanted to know the species and wingspan of
all seagulls which were either female or had weight at least 850. It can be done this way.

> seagulls[seagulls$sex=="F" | seagulls$weight >= 850, c("species", "wingspan")]

species wingspan

1 herring 40

3 herring 30

4 <NA> 50

This is equivalent to the following SQL query.

10

select species, wingspan from seagulls

where weight >= 850

and sex = "F";

In this way, SQL-like searches can be performed on R data frames. Note that if we had written weight instead of
seagulls$weight, R would have given an error because there is no object named weight in our environment. To
refer to the variables by their names without the seagull$ bit, you can enclose everything in the with command.
Here,

with(seagulls, seagulls[sex=="F" | weight >= 850, c("species", "wingspan")])

gives the same result as before.

0.11 Control ow

So far, we have seen various data types in R. Now we will move on to R programming.

An alternative to typing commands into the prompt at the R console is to write them in a text �le, save the �le
with a .R extension, and then load it into R using the source command. For example, if the �le is saved as
file1.R then typing

source("file1.R")

will cause all the commands in the �le to be executed in order. But sometimes it is necessary to execute them in
some more complicated way, and this is where control ow is used.

The for loop is used for executing a statement or sequence of statements (called a code block) repeatedly,
possibly with a minor change between repeats. For example,

for (i in 1:3){

print(i^2)

}

causes the following output to be printed to the console.

[1] 1

[1] 4

[1] 9

The code inside the curly brackets is executed with each value of i in turn, so this loop is equivalent to the
following.

print(1^2)

print(2^2)

print(3^2)

The general form of the for loop is

for (i in v){ ... }

where v is a vector and ... is a set of statements which may or may not involve i. Any other name apart from i

may be used; it is called a dummy variable, like the x in
R
f(x)dx. Commonly v is chosen to be 1:n for some n. If

there is only one line of code in the loop, the curly brackets can be omitted, so the above loop is equivalent to
writing

for (i in 1:3) print(i^2)

which runs slightly faster (as we will see, typing { is actually a function call in R.) However, many people
recommend always including the curly brackets in order to avoid making errors.

The while loop is more versatile than the for loop. It has the form

11

while (cond){ ... }

Where cond is a logical statement and ... represents some commands which will be executed over and over again
as long as cond evaluates to TRUE. Usually the body of the loop will change cond in some way, otherwise the loop
will continue executing forever.

The above example of a for loop could be executed as a while loop by writing

i <- 1

while (i <= 3){

print(i^2)

i <- i+1

}

which is equivalent to the following program.

i <- 1

print(i^2)

i <- 2

print(i^2)

i <- 3

print(i^2)

i <- 4

Here the variable i, which is counting the number of times we have been through the loop, is not a dummy
variable. A while loop doesn't even have to be executed a �xed number of times. For example, a while loop can be
used to write a program which simulates rolling a die until a six is obtained. Here, the command sample(v, k)

generates a vector of k random samples drawn without replacement from the vector v.

roll <- 1

while (roll != 6){

roll <- sample(1:6, 1)

cat(roll, "\n")

}

Note that we could have set roll to anything except 6 at the beginning; all that matters is that roll != 6 is
TRUE so that the program goes through the loop at least once.

The if statement is used to cause a program to branch depending on whether a particular logical statement is
true or false. Its general form is

if (cond){ ... }

which causes the statements ... to be executed if cond is TRUE. If cond is FALSE, they are ignored. An else can
also be included. The command

if (cond){

... }else{

...

}

causes the �rst block of code to be executed if cond is TRUE and the second block to be executed if cond is FALSE.
The way the lines are indented is a matter of taste; remember that R ignores whitespace. However, it is important
to note that the else should be on the same line as the }. If it isn't, then R will interpret the

if (cond) {

...}

as a complete statement by itself. Then it will try to move on to the else and give the following maddening error
message.

Error: unexpected else in "else"

Just like with the for and while loops, the curly brackets can be omitted if there is only one statement in a block.

12

0.12 Functions

?? We have already seen plenty of examples of R functions. An example is the length function which takes a
vector and returns its length. If the vector is x, its length is found by typing length(x). Here, x is called the
argument of the function. A function can have more than one argument. For example, the c function can have
any number of vectors as arguments. For example, we can type

c(c(1,2), c(2,3), c(3,4))

to concatenate three vectors. Some functions have optional arguments, for example the stringsAsFactors option
in the data.frame function.

You can extend R by writing your own functions. The syntax to de�ne a function f taking the argument x is

f <- function(x){

...

}

where ... represents some instructions, called the body of the function. As an example, here is a function which
computes the absolute value of a number x. There is already a function abs which does this in R, but here is how
it can be done independently.

f <- function(x){

if (x>0){

return(x)

}

else{

return(-x)

}

}

Here, the return tells the function to stop what it is doing and return a value. We can test the function out.

> f(-5)

[1] 5

> f(3.2)

[1] 3.2

>

We can also assign a variable to the return value of the function. For example, x <- f(-5) assigns the value 5 to
x.

There is nothing to say what kind of object the argument of the function should be. A function in R can take any
kind of object as an argument. If you try to apply a function to the wrong kind of object, things can go wrong.
For example, trying to apply f to a vector may give the wrong answer.

> f(c(1,-1))

[1] 1 -1

Warning message:

In if (x > 0) { :

the condition has length > 1 and only the first element will be used

What happens here is that the function needs to evaluate the logical expression c(1,-1)>0 which evaluates to
c(TRUE, FALSE). As the warning message tells us, putting a vector inside an if means that only the �rst element
of the vector will be considered. In this case, the �rst element is TRUE, so f follows the TRUE branch of the if
statement and returns its argument x, which in this case is c(1,-1).

If we wanted to write f in such a way that it could be applied to vectors, it could be done like this.

f <- function(x){

x[x<0] <- -x[x<0]

return(x)

}

13

This version of f picks out those entries of x which are negative and replaces them by their negatives, which is all
that is required. In R, a function automatically returns the last value it has computed. So it is not actually
necessary to include a return statement and many people would write the function like this.

f <- function(x){

x[x<0] <- -x[x<0]

x

}

A function can have more than one argument. For example, here is a function to compute the Newton quotient of
a given function f at a value x with stepsize h.

Newton.quotient <- function(f, x, h){

(f(x+h)-f(x))/h

}

If the body of a function only contains one line, then the curly braces can be omitted. So we could write

Newton.quotient <- function(f, x, h) (f(x+h)-f(x))/h

and test the function on the built-in function sin, which di�erentiates to cos.

> Newton.quotient(sin, 1, 0.01)

[1] 0.536086

> cos(1)

[1] 0.5403023

Arguments to functions can be given default values. Suppose we usually want to evaluate the Newton quotient
with h = 0:01 but want to retain the option of using another value of h. The function can be rewritten as

Newton.quotient <- function(f, x, h=0.01) (f(x+h)-f(x))/h

Then we can get the same result as before by typing Newton.quotient(sin, 1). But we could also type
Newton.quotient(sin, 1, 0.001) or Newton.quotient(sin, 1, h=0.001) if we wanted to use h = 0:001
instead.

Many functions which are likely to be needed are built in to R. One way of �nding out how to do something is by
using the R help system. To �nd information on a topic topic you can type

??"topic"

and R will open a webpage with a list of help pages which mention the topic. If you are o�ine, the help system
can still be access provided that you have a web browser installed. To get the help page for a speci�c function,
you can type ?<name> where <name> is the name of the function. For example

?sample

brings up a page on the sample function explaining which arguments are available, what it does, and giving
examples of how to use it. Most functions are well-documented and running the examples can be helpful. A quick
way of running these examples in the R console is example(sample).

Some functions have names which include special characters. For example, we have seen that the logical operator
`not' is denoted !. But typing ?! does not produce a help page. Because ! is a special character, it must be
enclosed in backticks. The backtick is a special character; on my keyboard it is in the top left hand corner. The
command ?�!� brings up the correct help page.

There are actually many functions in R which have odd names like this, because many things are functions in
disguise. For example, + is a function; instead of writing 2 + 3 we can write �+�(2,3) and it is the same thing.
This can be the useful for understanding some of R's error messages. We saw the following message earlier.

14

> x[1] <- "D"

Warning message:

In �[<-.factor�(�*tmp*�, 1, value = "D") :

invalid factor level, NAs generated

which reveals that in typing x[1] <- "D" we were actually invoking a function called [<-.factor with the
arguments x, 1 and "D". Similarly, for, while and if are actually functions.

If the help page for a function is not helpful enough, or there is no help page available, you can also view a
function's source code by typing its name at the prompt. For example:

> Newton.quotient

function(f, x, h) (f(x+h)-f(x))/h

If the function's source code is very long, it might be better to open it in a separate page using the page
command. For example, to read the source code for the ? function, use page(�?�), remembering the backticks.

Many of the most fundamental R functions are not written in R.

> abs

function (x) .Primitive("abs")

To �nd out how abs works, it is necessary to search the R source code, which can be downloaded from the internet.
The function is actually written in C. Similarly, if we try to look at the sample function, R displays the following.

> sample

function (x, size, replace = FALSE, prob = NULL)

{

if (length(x) == 1L && is.numeric(x) && x >= 1) {

if (missing(size))

size <- x

.Internal(sample(x, size, replace, prob))

}

else {

if (missing(size))

size <- length(x)

x[.Internal(sample(length(x), size, replace, prob))]

}

}

<bytecode: 0x0b1ed324>

<environment: namespace:base>

It turns out that R is just calling its internal sample function, written in C. The last line of output tells us that
the sample function is located in an environment called namespace:base. Environments are places where R
objects `live' and there are powerful programming techniques which exploit them.

We have seen how to include optional arguments in a user-de�ned function but we have not yet seen how to write
functions like c which take an unspeci�ed number of arguments. This can be done using the ellipsis ... which
stands for \some unspeci�ed number of further arguments".

Here is an example. One of the most useful functions in R is the plot function. This function has a lot of optional
parameters. A command like plot(a,b) where a and b are numbers will plot an open circle with a black outline
at the point (a; b). The axes are automatically chosen so that (a; b) is in the middle of the screen. Further points
can be added using points, since calling plot again will create a new window. This function also has optional
parameters. For example,

points(a, b, col="blue", pch=20)

will add a �lled blue circle at the point (a; b) to the existing plot. Now suppose we wish to write a function which
will create a new graphics window and �ll it with polka dots. Here is how it could be done.

15

polka.dots <- function(x=10, y=10, ...){

plot(0, xlim=c(1,x-0.5), ylim=c(1,y), type="n", xaxt="n", yaxt="n", xlab="", ylab="")

for (i in 1:x){

for (j in 1:y){

points(i - 0.5*(j%%2), j, ...)

}

}

}

The �rst call to the plot function plots something (a zero) but we include type="n" to make sure that nothing
appears. The commands

xaxt="n", yaxt="n", xlab="", ylab=""

suppress the axes and axis labels. The xlim = c(1,x-0.5) argument speci�es that the range of x values in the
plot should go from 1 to x-0.5. Similarly for ylim. Having called plot, we call the points function xy times to
draw the dots. The j%%2 is the remainder when j is divided by 2; this is a binary operator which was not de�ned
above.

The point here is that any extra arguments we pass to the polka.dots function are passed on to the points
function via For example, typing

polka.dots()

produces a 10� 10 pattern of default dots. But

polka.dots(20, 20, col="blue", pch=16)

produces a 20� 20 pattern of �lled blue dots. There are many other arguments which could be included as well.
See ?points for a list of them.

Another interesting property of the plot function is that it behaves di�erently on di�erent objects. If you call
plot on the vector 1:4, the result will look quite di�erent from the result you get by calling it on the matrix
matrix(1:4, 2, 2). But we have seen that this matrix is really just the vector 1:4 with an extra attribute, its
dimension. A function that treats di�erent types of objects di�erently like this is called a generic function. You
can create generic functions using S3 classes. These are explained in Section 0.13.

Sometimes a function needs to be used just once and it is undesirable to give it a special name. A good example
occurs when using the lapply function. This is a very powerful function which applies a given function to each
entry of a list. The syntax for lapply is

lapply(a.list, a.function)

For example, suppose we have a list mylist containing some numerical vectors and we wish to extract the �rst
entry of each vector in the list and return a list of the results. This can be done in the following way.

mylist <- list(c(1,2,3), c(-1,1,0), c(4,5), 12)

f <- function(vect) vect[1]

lapply(mylist, f)

Here, the function f is left in our workspace, but we do not need to use it again. We can instead declare f inside
the call to lapply like this.

mylist <- list(c(1,2,3), c(-1,1,0), c(4,5), 12)

lapply(mylist, function(vect) vect[1])

This can be an e�cient way of doing things. The function declared inside lapply is called an anonymous function
because it was never given a name.

Here is an example using both ... and lapply. Suppose we want a function which takes any number of
arguments x1; x2; : : : ; xn. It then rolls an xi{sided die for each i and returns a list of the resulting rolls.

A little thought shows that we don't yet know how to do this because we cannot extract the individual numbers
from the input Fortunately, this can be done easily by using the command list(...). This converts the
intractable ... into a list. The function can be written like this.

16

rolldice <- function(...){

sides <- list(...)

rolls <- lapply(sides, function(x) sample(x,1))

rolls

}

The list(...) trick enables functions like c, which take a variable number of arguments, to be written. Note
that in the rolldice function, we used the syntax sample(x, 1). This is a shorthand for sample(1:x, 1), that
is, sampling one random number from the vector 1:x, as explained in ?sample.

0.13 S3 classes

R has several systems for object-oriented programming, but S3 classes are the simplest. An object is just a
collection of data packaged together. We have already seen this idea in R because data can be packaged together
into a list. It may be desirable to view objects of the same type as members of a single class and then write
functions especially for dealing with this class. This is easy to do in R.

First we need to know how to set attributes of an object. Attributes are just extra properties which an object
might have. It is possible to create whatever attributes you like. Here is an example.

x <- factor(c("high", "low", "high", "low"))

attr(x, "notes") <- "levels of fertilizer for experiment 5"

We de�ned a factor x and then gave it a new notes attribute. This attribute appears if we print x

> x

[1] high low high low

attr(,"notes")

[1] levels of fertilizer for experiment 5

Levels: high low

The attributes of an object can be viewed with the attributes function.

> attributes(x)

$levels

[1] "high" "low"

$class

[1] "factor"

$notes

[1] "levels of fertilizer for experiment 5"

It turns out that x already had two attributes. The �rst is the levels, which every factor has, as we have seen.
The second is the class, which in this case is "factor". Note that the attr function can also be used to make
arbitrary changes to these attributes. For example, it is perfectly legal to type attr(x, "levels") <- 3. This
will change each "high" in x to a 3 and each "low" to an NA, as x will now have only one level.

The class attribute determines how generic functions act on x. For example, the print function will display the
following when we type print(x) (or equivalently, just type x into the console; this automatically calls print.)

> print(x)

[1] high low high low

Levels: high low

If the class of x is changed, print will no longer behave in the same way. Here is what happens if x is changed to
a character vector.

17

> class(x) <- "character"

> print(x)

[1] "1" "2" "1" "2"

attr(,"levels")

[1] "high" "low"

Nothing has been changed except for the class attribute, but the output is di�erent. When a function is called
on an object with a class attribute, say factor, R will �rst search for a function called print.factor. If such a
function exists, it will be called. Otherwise, R will call the default print function. We have already seen another
example of this; remember the error message involving the function [<-.factor. This is the version of the
function [<- which operates on factors.

Functions like print.factor and print.lm are called methods. The �rst is a method of the class factor and the
second is a method of the class lm. When print is called on an object of the appropriate class, R automatically
calls the print method for that class.

Here is an example showing how to write your own methods.

> gull1 <- list(species="herring", wingspan=20)

> gull1

$species

[1] "herring"

$wingspan

[1] 20

To get a better way of printing the details of a gull, we can write a print.gull function.

print.gull <- function(gull){

cat(gull$species, " gull. Wingspan: ", gull$wingspan, "cm\n", sep="")

}

This doesn't do anything yet, but we can type

attr(gull1, "class") <- "gull"

or

class(gull1) <- "gull"

and now printing gull1 gives the desired output.

> gull1

herring gull. Wingspan: 20cm

It is still possible to see how gull1 was de�ned by using str. Another way of seeing the internal structure of an
object is by stripping it of its class using the unclass function. Or the class of an object x can be taken away by
using class(x) <- NULL. (The attributes of an object are a list, and remember that a component of a list is
deleted by setting it to NULL.)

Other methods which are commonly written for homemade classes are plot and summary. Functions like plot
and summary for which methods can be written are called generic functions. Not all R functions are generic.

Earlier we saw functions called Newton.quotient and polka.dots. Are these methods for the quotient and dots

classes? They are not. But if we created a class called quotient or dots and functions called Newton or polka, R
would call these functions, possibly with undesirable consequences. For this reason, many authorities do not
recommend using dots in the names of variables and functions. Unfortunately the use of dots to separate words in
the names of variables and functions is a common R programming convention, which allegedly dates back to an
ancestral language in which underscores in names were illegal.

Because an object in an S3 class is really just a list, there is nothing to stop its components from being changed,
removed or overwritten by someone who is using it. Object-oriented programmers �nd this behaviour undesirable,

18

so another class system, called S4 classes was added to R in order to have a better way of doing object-oriented
programming. It is not as widely used as S3, but it is important to be aware of it, as it is used in some add-on
packages, including ones that ship with R, for example the neural net package nnet.

An object can have more than one class. For example, suppose we introduce a bird class which is more general
than gull. We can de�ne a print method for this new class.

print.bird <- function(x) cat("Tweet\n")

We can test that this works by creating an object, giving it the class bird, and trying to print it.

> x <- NA

> class(x) <- "bird"

> x

Tweet

Any object with the class bird will say Tweet if its name is typed at the command prompt.

Suppose we now add the class bird to gull1. What happens?

> class(gull1) <- c("gull", "bird")

> gull1

herring gull. Wingspan: 20cm

In this case, R still called the function print.gull. But if we write the classes in the opposite order, R will call
print.bird instead.

> class(gull1) <- c("bird", "gull")

> gull1

Tweet

The rule is that if an object has classes x1, x2, . . . , then R �rst tries to �nd a function print.x1 if it exists, then
tries print.x2, and so on. So if we remove the print.bird function from our R session, then R should behave as
though the class of gull1 is just gull. The rm function can be used to remove an object.

> rm(print.bird)

> gull1

herring gull. Wingspan: 20cm

If we remove the print.gull method as well, then R will just call the default print function.

> rm(print.gull)

> gull1

$species

[1] "herring"

$wingspan

[1] 20

attr(,"class")

[1] "bird" "gull"

The is how the idea of inheritance is implemented with S3 classes. To create an object with belongs to a subclass
special of a more general class general, you simply set its class attribute to c("special", "general").
Methods for class special will be used when they exist, and otherwise methods for general will be used.

The unclass function can be useful for seeing the internal structure of an object. We have already seen that str
will print a summary of how an object is built up out of lists, but unclass is an alternative which will print the
whole thing.

For example, if you type

19

x <- 1:2

y <- 3:4

unclass(lm(y~x))

you will see the whole structure of the object lm(y~x) as a list of objects, some of which are lists. Remember that
R functions do not change their arguments. If you want to strip an object x of its class, you can write
x <- unclass(x). The R help (accessed with ?class or help(class)) recommends instead class(x) <- NULL.

0.14 Environments

Suppose we de�ne a function

f <- function(x) x^2

and then try to calculate 22 but accidentally use the wrong kind of brackets.

> f[2]

Error in f[2] : object of type closure is not subsettable

It seems that R is telling us that we cannot take a subset of a function, except that it calls f a closure.

> typeof(f)

[1] "closure"

Apparently f is a closure? Isn't it a function?

> f

function(x) x^2

It certainly seems to be a function. So why is R calling it a closure?

It turns out that a closure is just a function which is `aware' of its enclosing environment. An environment is a
collection of objects which in turn is contained in some other environment, called its parent environment. (The
biggest one is de�ned to be its own parent.)

Environments can be created in R using new.env.

e <- new.env()

e$a <- 2

e$g <- function(x) x^3

Here, an environment e was created and then populated with a numeric value a and a function g. Attempting to
print e will just return a hexadecimal number representing its location in the computer's memory. To see what is
contained in the environment, you can use the ls function.

> e

<environment: 0x0ae1a588>

> ls(e)

[1] "a" "g"

We could equally well have created a list containing a and g as its components. But the environment e also has
access to its parent environment.

> parent.env(e)

<environment: R_GlobalEnv>

This reveals that the parent of e is the global environment, which is the one in which you are working by default at
the beginning of an R session. Typing ls() without arguments will list all the objects in the global environment.

Calculations within e can be carried out by using with.

> with(e, g(a))

[1] 8

20

In Section 0.8 we saw the use of with with data frames. Remember that data frames are a special case of lists;
with can also be used with lists. For example, if we de�ne a list

mylist <- list(a=2, g=function(x) x^3)

then

with(mylist, g(a))

is a shorter way of writing the following command.

mylist$g(mylist$a)

Here is how to de�ne a closure. First de�ne a function, and then choose its enclosing environment. Functions are
assigned to the global environment by default, but their enclosing environment can be changed using environment.

> h <- function(x) x*a

> environment(h)

<environment: R_GlobalEnv>

> environment(h) <- e

> environment(h)

<environment: 0x0b341898>

The function h returns a value which depends on a. When it is evaluated, h will search for a variable called a in its
enclosing environment and it will use this as the value of a. Since e$a is 2, h should return double its argument.

> h(6)

[1] 12

If we assign h to an environment in which a has a di�erent value, we will get a di�erent result.

> n <- new.env()

> n$a <- 3

> environment(h) <- n

> h(6)

[1] 18

Rather than using the dollar sign, variables can also be assigned to environments using assign. For example,
assign("a", 3, envir=n) is equivalent to n$a <- 3. Similarly, get can be used to get the value of a variable.
The command get("a", envir=n) is equivalent to n$a.

The functions assign and get are extremely useful, even if you are only working in the global environment and
don't care about environments at all. This is because they enable the user to refer to objects using strings ("a" in
the above examples.) This is often convenient; for example, when iterating through a collection of objects.

Why care about closures and environments at all? Unless you are writing an R package, you might never need to
worry about these details. But here are a couple of useful things that can be done with them.

Firstly, closures let you write functions which return functions. For example, the Newton.quotient function from
Section ?? could be written in this way.

Newton.quotient <- function(F, h) function(x) (F(x+h)-F(x))/h

This function takes as arguments a function F and a stepsize h and returns another function which is an
approximation to the derivative of F. We could plot the sin function and its numerical derivative in this way.

x <- seq(-3, 3, 0.01)

Dsin <- Newton.quotient(sin, 0.01)

plot(x, sin(x), "l")

lines(x, Dsin(x), col="blue")

The function Dsin lives in a newly-created environment, as can be checked with environment.

21

> ls(environment(Dsin))

[1] "F" "h"

> environment(Dsin)$F

function (x) .Primitive("sin")

> environment(Dsin)$h

[1] 0.01

We can see that F and h are still being stored somewhere, as they have to be if Dsin is going to be evaluated.

Environments can be used to intercept function calls. For example, suppose we decide that it would be useful if
�tting a linear model would automatically make a scatterplot and add the line of best �t when it is called. How
can we make it do this without rewriting the whole function? It can be done using environments.

When we type something like lm(y~x) at the R prompt, we know that R creates an object of class lm and calls
print.lm on it. We can modify print.lm to do what we want.

> print.lm

function (x, digits = max(3, getOption("digits") - 3), ...)

{

cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),

"\n\n", sep = "")

if (length(coef(x))) {

cat("Coefficients:\n")

print.default(format(coef(x), digits = digits), print.gap = 2,

quote = FALSE)

}

else cat("No coefficients\n")

cat("\n")

invisible(x)

}

<bytecode: 0x0ad7a944>

<environment: namespace:stats>

The print.lm function ends with a call to invisible, which is a function which returns its argument invisibly.
We can create our own version of print.lm with a modi�ed invisible which will do what we want.

myprint.lm <- function(x){

e <- new.env()

myprint.lm <- stats::print.lm

environment(myprint.lm) <- e

e$invisible <- function(x){

plot(x$model$x, x$model$y, xlab="", ylab="")

abline(x$coefficients)

invisible(x)

}

myprint.lm(x)

}

We can check that this works with:

x <- 1:50

y <- x + rnorm(50)

myprint.lm(lm(y~x))

How does myprint.lm work? First, it creates a new environment e. It then fetches the print.lm function. This
function lives in the stats package, which is why it has to be fetched using a special double-colon operator. It
then creates a copy of the print.lm function called myprint.lm and places it in the environment e. It then
creates a function called invisible in the environment e which produces the required plot and then carries on in
exactly the same way as the invisible function. Having set up the environment e, it calls the function
myprint.lm. This function behaves exactly like the function print.lm, except that when it needs to access an

22

object, it searches �rst in the enviroment e. In particulat, when it needs to call a function called invisible, it
�nds the function e$invisible and calls it, producing the desired plot.

You can even, if desired, override the behaviour of print.lm by simply assigning myprint.lm to print.lm using

print.lm <- myprint.lm

and then typing lm(y~x) will produce the plot automatically.

23

