
NOTES ON QUASI-FREE ALGEBRAS

RICHARD VALE

Abstract. These are the lecture notes from the course MATH 7350: Algebraic Differential Algebra given

at Cornell in August-December 2009. The notes cover most of the content of the famous paper [CQ95a]

of Cuntz and Quillen, which introduced the notion of a quasi-free algebra. The notes also include an

introductory section on Morita theory and Hochschild (co)homology. Some exercises and examples are also

included.

1. Introduction

Our basic objects of study are algebras, which is to say, rings which are also vector spaces. We will work

over a field k (usually C). Our algebras are not assumed to be finite-dimensional. It is difficult to say very

much about algebras at this level of generality, so people usually take one of two approaches: either putting

a topology on the algebra, or assuming some sort of finiteness condition.

1.1. Topological approach. Introduce a topology (for example, via a norm). This leads to notions like C∗

algebras or Banach algebras. An example is C∞(M) where M is a manifold. In this setting, Connes developed

a lot of constructions of differential geometry for arbitrary C∗ algebras by generalising the corresponding

notions for C∞(M). The kind of things to generalise are topological or differential invariants of M , for

example de Rham cohomology or differential forms on M . This field is sometimes referred to as the study

of noncommutative manifolds. For more information, see [Con94].

1.2. Algebraic approach. Parallel to the topological approach, instead impose some kind of finiteness

condition, for example Noetherianness. For commutative rings, the study of finitely-generated commutative

k–algebras is algebraic geometry. For general rings, this subject is usually known as “ring theory”. A good

reference is [MR01].

Methods introduced by Connes in the toplogical setting were developed in the algebraic setting by Cuntz

and Quillen in their paper [CQ95a], and elsewhere. We intend to study this paper.

The “differential algebra” in the title of the course refers to the fact that we are studying things like

differential forms, and the “algebraic” refers to the fact that we are in the algebraic setting, rather than the

topological setting. This explains the title.

1.3. Topics to be studied. We intend to cover the following topics.

(1) Morita theory.

(2) Hochschild (co)homology and deformations.
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(3) Working through the paper [CQ95a], with examples.

1.4. Acknowledgements. The idea of generalized representations (Sections 5.1 and 5.2) is due to Yuri

Berest. The results of Sections 5.2 and Proposition 7.9 are original, as far as we are aware. Sources for

the other results are given in the text. Thanks to Youssef El Fassy Fihry, George Khachatryan and Tomoo

Matsumura for attending the course and making many helpful comments. Any errors in the text are the

responsibility of the author.

2. Morita theory

We work over a field k, usually k = C. Unadorned tensor products are usually over k.

2.1. Basic definitions. A k–algebra is a k–vector space A together with a bilinear multiplication A⊗kA →
A which is associative and which has a unit element 1A. Another way of saying this is that an algebra is a

ring which is also a vector space, such that the multiplication is bilinear.

Examples 2.1. Some algebras:

• k.

• The free algebra k〈x1, x2, . . . , xn〉.
• Path algebra of a quiver, kQ.

• Mn(A), where A is an algebra.

If A is an algebra, a left A–module M is a vector space M equipped with a bilinear map A⊗M → M ,

written a⊗m 7→ am, and satisfying the axioms 1Am = m for all m ∈ M , and a(bm) = (ab)m for all a, b ∈ A

and all m ∈ M .

A map of modules (also called an A–map or homomorphism) is a linear map f : M → N which

satisfies f(am) = af(m) for all a ∈ A and all m ∈ M .

The category of all left A–modules and module maps will be denoted A−Mod. It is always abelian.

We have the analogous notion of a right A–module and the category Mod−A. (A right A–module M

has a map M ⊗A → M and satisfies the axiom (ma)b = m(ab) for all m ∈ M and all a, b ∈ A)

A module is also known as a representation of A.

Given two algebras A and B, an A− B–bimodule is a vector space M which is a left A–module and a

right B–module, and which satisfies the additional axiom that (am)b = a(mb) for all a, b ∈ A and all m ∈ M .

An A − A–bimodule is often called an A–bimodule. The category of A–bimdoules will be denoted A −
Bimod.

Definition 2.2. If A is an algebra with multiplication ·, the opposite algebra Aop is defined as the vector

space A together with the multiplication ◦ given by a ◦ b := b · a.

Exercise 2.3. The following exercise shows that Mod−A and A− Bimod are special cases of A−Mod.
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(1) Show that a right A–module is the same thing as a left Aop–module.

(2) Show that an A–bimodule is the same thing as a left A⊗k Aop–module.

Note that in the above exercise, we used the fact that if A and B are algebras then there is a natural

algebra structure on the tensor product A⊗B. This can easily be checked.

A left A–module M is finitely-generated, or f.g. for short, if there exist m1, . . . ,mn ∈ M such that

M =
∑n

i=1 Ami. We will write A−mod and mod− A for the full subcategories of A−Mod and Mod− A

consisting of the f.g. modules. We usually study only f.g. modules when we insist that our algebras satisfy

conditions like Noetherianness (see [MR01, Chapter 0]). But caution! In general, A −mod need not be an

abelian category.

2.2. Morita Theory. Morita theory addresses the question of when two algebras A and B have equivalent

categories of modules.

Definition 2.4. Given algebras A and B, we say that A and B are Morita equivalent if A−Mod is equivalent

to B −Mod.

Before studying Morita equivalence, we first give some examples.

Definition 2.5. Let C be a category. The centre of C is the set Z(C) = Nat(idC , idC) of natural transforma-

tions from the identity functor on C to itself.

It is easy to see that the centre of an additive category is a ring. (Exercise).

Proposition 2.6. If A is a ring then Z(A−Mod) is isomorphic to Z(A).

Proof. To give a natural transformation φ : idC → idC is the same as giving a map φM : M → M for all

A–modules M , such that if f : M → N is any map then the following square commutes.

M

f

²²

φM // M

f

²²
N

φN // N

Given such a φ, we have in particular the A–module map φA : A → A. This satisfies φA(a) = aφA(1), so it is

determined by φA(1) ∈ A. If M is an arbitrary A–module and m ∈ M , then there is a map A → M g iven by

a 7→ am. So φM (m) = φA(1)m and hence φ is fully determined by φA(1). Thus, the map Z(A−mod) → A

given by φ 7→ φA(1) is injective. Also, if b ∈ A then ·b : A → A is an A–module map, where ·b denotes right

multiplication by b. This implies that φA(1)b = bφA(1) for all b ∈ A, and therefore φA(1) ∈ Z(A). It is now

easy to finish the proof by checking that Z(A − mod) → Z(A) is surjective, and that it respects the ring

structure given by the above exercise. ¤

Corollary 2.7. If A and B are commutative and Morita equivalent, then A and B are isomorphic.
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In geometric language, the corollary says (in particular) that an affine variety is determined by the category

of quasicoherent sheaves on it.

It is now natural to ask whether it is possible for two nonisomorphic rings to be Morita equivalent. The

answer is yes. For example, take A = k, B = M2(k). Then A and B are not isomorphic because A is

commutative and B is not. But A −Mod is equivalent to B −Mod. To see this, we need to use the fact

that every B–module is a direct sum of copies of the module k2 of column vectors. This follows from some

elementary algebra, although proving it from scratch might not be straightforward. Given this fact, we may

define a functor A − mod → B − mod sending k⊕n to (k2)⊕n. Because both A − mod and B − mod are

semisimple categories with a unique simple object whose endomorphism ring is k, they are equivalent. Note

that this doesn’t actually show that A−Mod is equivalent to B −Mod, but we will show later that this is

the case.

2.3. Equivalences of module categories. We prove some lemmas about equivalences.

Lemma 2.8. Suppose F : A −Mod → B −Mod is an equivalence. Suppose M is a f.g. A–module. Then

F (M) is f.g.

Proof. We just need to show that being finitely-generated is a categorical property. This is true because we

can express finite generation as follows:

A module M is finitely-generated if and only if for every surjection π :
⊕

i∈I Ni ³ M there exists a finite

subset J ⊂ I such that the restriction of π to
⊕

j∈J Nj is surjective.

It is an exercise to show that the above property is equivalent to M being f.g, which finishes the proof. ¤

The next lemma describes an arbitrary equivalence.

Lemma 2.9. Suppose F : A − Mod → B − Mod is an equivalence. Then there exists a unique bimodule

BQA such that there is an isomorphism of functors F ∼= H, where H(M) = BQA ⊗A M for all A–modules

M .

Proof. The following proof by Ginzburg and Boyarchenko is taken from the notes [Gin05].

We will take Q = F (A). We need to show that this is a B − A–bimodule. By definition, F (A) is a

left B–module. To show that it is a right A–module, for a ∈ A we consider the map ·a : A → A given

by right multiplication by a. Then F (·a) is a B–map. This makes F (A) into a right A–module, and it is

straightforward to check that the actions of A and B commute, so that F (A) is a bimodule.

To define a natural transformation from H to F , we need to define a φM : H(M) → F (M) for every

M ∈ A−Mod. Given x⊗m ∈ H(M), with x ∈ F (A) and m ∈ M , we define φM (x⊗m) = F (ρm)(x) where

ρm : A → M is defined by ρm(a) = am.

It is necessary to check that this is well-defined, which amounts to checking that xa⊗m and x⊗am have

the same image for a ∈ A. Also, if b ∈ B then φM (bx ⊗ m) = F (ρm)(bx) = bF (ρm)(x) since F (ρm) is a

B–map. This shows that φM is a B–map as well.
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Now we need to show that the maps φM are natural. That is, if λ : M → N is an A–map, we need to

show that the following square commutes.

H(M)

φM

²²

H(λ)
// H(N)

φN

²²
F (M)

F (λ)
// F (N)

For x ⊗ m ∈ H(M), we have F (λ)φM (x ⊗ m) = F (λ)F (ρm)(x ⊗ m) = F (λρm)(x) = F (ρλ(m))(x) =

φNH(λ)(x⊗m). This proves the naturality.

Thus, φ = (φM ) is a natural transformation H → F of functors A−Mod → B −Mod. We need to show

that it is an isomorphism. Let M ∈ A−Mod. Then there is an exact sequence

A⊕J → A⊕I → M → 0

for some (possibly infinite) sets I and J . We form this by having some free module surject onto M , and

then having another free module surject onto the kernel of (A⊕I → M).

Naturality, together with the fact that our functors are equivalences, yields a diagram:

H(A⊕J)

²²

// H(A⊕I)

²²

// M

²²

// 0

F (A⊕J) // F (A⊕I) // M // 0

It is easy to check that for any indexing set I, the map φA⊕I is an isomorphism, since φA is. Therefore, the

first two vertical maps in the above diagram are isomorphisms. The Five Lemma then implies that the map

φM : M → M is also an isomorphism.

Finally, for the uniqueness of Q, observe that if R is an B −A–bimodule such that F (M) = R⊗A M for

all M , then R ∼= F (A). There is a little more work to be done to check that this is really an isomorphism of

bimodules. ¤

Corollary 2.10. Two rings A and B are Morita equivalent if and only if there exist bimodules BQA and

ARB such that Q⊗A R ∼= B as B–bimodules and R⊗B Q ∼= A as A–bimodules.

Proof. If such Q, R exist, define F (M) = Q ⊗A M and G(N) = R ⊗B N . Then F and G are a pair

of inverse equivalences between A − Mod and B − Mod. Conversely if F : A − Mod → B − Mod and

G : B −Mod → A−Mod are inverse equivalences, then by the above lemma, we have

A ∼= GF (A) ∼= G(B)⊗B F (A)

and

B ∼= FG(B) ∼= F (A)⊗A G(B)
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as required. (That these are really bimodule isomorphisms follows from the fact that id ∼= GF and id ∼= FG

are isomorphisms of functors.) ¤

We get the following not-obvious-from-the-definition corollary.

Corollary 2.11. If A and B are rings then A −Mod is equivalent to B −Mod if and only if Mod − A is

equivalent to Mod−B.

Proof. The condition in Corollary 2.10 is symmetric in A and B. ¤

2.4. Progenerators. Consider an equivalence F : A−Mod → B −Mod. The B–module BF (A) is:

• projective.

• finitely-generated (by Lemma 2.8).

• a generator.

Definition 2.12. A module AM is called a generator if for all nonzero f : X → Y in A−Mod, there exists

some h : M → X with fh 6= 0.

The above definition makes sense in any additive category. It is easy to see that AA is a generator, therefore

so is BF (A). Furthermore, BF (A) is f.g. because A is, and we have shown that finite-generation is preserved

by equivalences. Thus, BF (A) is a progenerator.

Definition 2.13. A progenerator in a module category is an object which is a finitely-generated projective

generator.

We need other ways to characterise being projective and being a generator.

Proposition 2.14. A module AM is a generator if and only if the evaluation map

M ×HomA(M,A) → A

is surjective.

Proof. This proof is taken from [Row08, section 25A].

If AM is a generator, set I to be the image of the evaluation map M × HomA(M, A) → A. Then I is

a two-sided ideal of A. If I 6= A, the consider π : A → A/I. There is no h : M → A with h(M) 6= 0, a

contradiction. Therefore, I = A.

Conversely, if the evaluation map is surjective then there exist gi : M → A and mi ∈ M with
∑

gi(mi) =

1A. Now let f : X → Y be any nonzero map of left A–modules. Suppose f(x) 6= 0. Define λi : M → X by

λi(m) := gi(m)x. Then

f
∑

λi(mi) = f
∑

gi(mi)x = f(x) 6= 0

and hence fλi(mi) 6= 0 for some i, so fλi 6= 0. ¤
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Exercise 2.15. Now show that M is a generator if and only if there exists n ≥ 1 such that there is a

surjection M⊕n ³ A.

Lemma 2.16 (Dual basis lemma). A module AM is f.g. projective if and only if there exist x1, . . . xn ∈ M

and ϕ1, . . . , ϕn : M → A such that

m =
n∑

i=1

ϕi(m)xi

for all m ∈ M .

Proof. If M is a f.g. projective module, let i : M → An and π : An → M be a splitting, that is, πi = idM .

Define ϕi to be the composition of M → An with the ith projection. Then i : m 7→ (ϕ1(m), . . . , ϕn(m)). Let

xi = π(0, . . . , 1, 0, . . . , 0), the image under π of a vector with 1 in the ith place and zeroes elsewhere. Then

m =
∑

ϕi(m)xi for all m ∈ M .

Conversely, given a dual basis {ϕi}, {xi}, define M → An via m 7→ (ϕ1(m), . . . , ϕn(m)) and define

An → M via (0, . . . , 1, 0, . . . , 0) 7→ xi. This gives a splitting, so M is projective. ¤

Corollary 2.17. AM is f.g. projective if and only if the map

HomA(M,A)×A → EndA(M)

defined by ψ ⊗m 7→ (n 7→ ψ(n)m) is surjective.

Proof. This is just a restatement of the existence of a dual basis. ¤

We have seen that an equivalence of module categories gives rise to a progenerator. Now we can show the

opposite.

Theorem 2.18. Let AQ be a progenerator for A−Mod. Let B = EndA(AQ)op. Then A is Morita equivalent

to B.

Proof. Let Q∗ = HomA(AQ,A). Then Q∗ is a left B–module if we define, for ψ ∈ Q∗, a ∈ Q and b ∈ B,

b · ψ(q) = ψ(qb). We can also make Q∗ into a right A–module by defining (ψ · a)(q) = ψ(q)a for a ∈ A. It is

an exercise to check that this is a well-defined bimodule structure.

We wish to show that the natural maps

Q⊗B Q∗ → A q ⊗ ψ 7→ ψ(q)

Q∗ ⊗A Q → B ψ ⊗ q 7→ (q′ 7→ ψ(q′)q)

are isomorphisms of bimodules. It is again an exercise to check that these are well-defined bimodule maps.

If we can show that they are isomorphisms, it will follow that the functors Q⊗A (−) and Q∗⊗B (−) give an

equivalence between A−Mod and B −Mod.
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To show that the map Q⊗B Q∗ → A is an isomorphism, we first note that the map is surjective because

Q is a generator. Now suppose zi ∈ Q and ζi ∈ Q∗ and
∑n

i=1 zi⊗ ζi 7→ 0. Since Q is a generator, there exist

ϕi : Q → A, 1 ≤ i ≤ N and qi ∈ Q, such that
∑N

i=1 ϕi(qi) = 1A. Then

n∑

i=1

zi ⊗ ζi =
n∑

i=1

N∑

j=1

ϕj(qj)zi ⊗ ζi =
∑

i,j

bij(zi)⊗ ζi

where we define bij(x) = ϕj(x)zi for x ∈ Q. Regarding bij as an element of B acting on Q from the right,

we have
∑

i,j

bij(qj)⊗ ζi =
∑

i,j

qj · bij ⊗ ζi =
∑

j

qj ⊗
∑

i

bij · ζi

Now, for q ∈ Q, (
∑

i bij · ζi)(q) =
∑

i ζi(qbij) =
∑

j ζi(bij(q)) =
∑

i ζi(ϕj(q)zi) = ϕj(q)
∑

i ζi(zi) = 0.

Therefore,
∑n

i=1 zi ⊗ ζi = 0 as required.

The second map is surjective because Q is a f.g. projective module. We need to show that it is injective.

Suppose
∑n

i=1 λi ⊗ qi 7→ 0 for some λi ∈ Q∗ and qi ∈ Q. Then
∑

i λi(q)qi = 0 for all q ∈ Q. Now, since Q is

projective, by the Dual Basis Lemma there exist ϕi : Q → A, 1 ≤ i ≤ M , and xi ∈ Q with
∑M

j=1 ϕj(q)xj = q

for all q ∈ Q. We have

∑

i

λi ⊗ qi =
∑

i

λi

M∑

j=1

ϕj(qi)xj =
∑

j

(
∑

i

λi · ϕj(qi))⊗ xj .

We show that
∑

i λi · ϕj(qi) = 0 for all j. Indeed, if z ∈ Q then
∑

i λi · ϕj(qi) : z 7→ ∑
i λi(z)ϕj(qi) =

ϕj(
∑

i λi(z)qi) = 0 as required. ¤

Corollary 2.19 (Morita). Two rings A and B are Morita equivalent if and only if there is a progenerator

AQ for A−Mod such that B ∼= EndA(AQ)op.

Proof. We have shown one direction. Conversely, if A is Morita equivalent to B, let G : B−Mod → A−Mod

be an equivalence. Then Bop ∼= EndB(BB) ∼= EndA(AG(B)) and we have already explained why AG(B) is

a progenerator. ¤

Corollary 2.20. Two rings A and B are Morita equivalent if and only if there exists n ≥ 1 and an idempotent

e ∈ Mn(A) with Mn(A)eMn(A) = Mn(A) such that B ∼= eMn(A)e.

Proof. Let AQ be a progenerator for A−Mod such that B ∼= EndA(AQ)op. Let πQ : An → Q and iQ : Q → An

be such that πQiQ = idQ. Define e ∈ EndA(An) by e = iQπQ. Then Q is isomorphic to the image e(An) of

e.

We have Bop = EndA(AQ) ∼= EndA(e(An)) ∼= eEndA(An)e (it is straightforward to check the last equal-

ity). But EndA(An) can be identified with Mn(A)op via the action of Mn(A) on An by multiplication on

the right. So Bop ∼= eMn(A)ope ∼= (eMn(A)e)op whence B ∼= eMn(A)e.

Now we need to show that Mn(A)eMn(A) = Mn(A), ie. EndA(An)eEndA(An) = EndA(An).
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Let λk : A → An and πk : An → A be the kth canonical insertion and projection, respectively. Let

`i : Q → QN and pi : QN → Q likewise denote the ith canonical insertion and projection. Since Q is a

generator, there exist ψ1, . . . , ψN : Q → A and q1, . . . , qN ∈ Q with
∑N

i=1 ψi(qi) = 1A. Define γ : A → QN

by γ(a) = (aq1, . . . , aqn)T and define ρ : QN → A by ρ(r1, . . . , rN ) =
∑

ψi(ri). Then ργ = idA.

We then have:

idAn =
n∑

i=1

πiλi

=
n∑

i=1

πiργλi

=
n∑

i=1

πiρ(
N∑

j=1

`jpj)γλi

=
∑

i,j

πiρ`j(πQiQ)2pjγλi

=
∑

i,j

(πiρ`jπQ)e(iQpjγλi)

Which shows that EndA(An)eEndA(An) = EndA(An) contains idAn . Since it is a two-sided ideal, it is

therefore the whole of EndA(An) as desired.

Conversely, suppose B ∼= eMn(A)e. We show that B is Morita equivalent to A by proving the following

two facts for any ring A.

(1) A is Morita equivalent to Mn(A).

(2) If e ∈ A is an idempotent and AeA = A then A is Morita equivalent to eAe.

To prove the first statement, we have that An is a progenerator in A−Mod, and EndA(An) ∼= Mn(A)op, so

A is Morita equivalent to Mn(A) by Corollary 2.19.

To prove the second statement, We take Q = Ae. Then Q is finitely-generated since it is generated

over A by e. It is also projective because A = Ae ⊕ A(1 − e). We must show that Q is a generator. We

have HomA(Ae,A) ∼= eA (isomorphism of abelian groups). This isomorphism can be defined by mapping

f : Ae → A to f(e). So Ae is a generator if and only if the evaluation map Ae × eA → A is surjective.

But this evaluation map is just multiplication, so Ae is a generator if and only if AeA = A. Thus, Ae is a

generator.

Now, EndA(Ae) ∼= eAope ∼= (eAe)op (isomorphism of rings) via f 7→ f(e). It is an exercise to check that

this really is a ring isomorphism. Thus, we obtain that A is equivalent to eAe as required. ¤

Corollary 2.20 is a version of Morita’s Theorem which is commonly used in practice to show that some

property is Morita invariant. It is quite hard to find in textbooks; one good reference is [MR01, 3.5.6].

Remarks 1. Some remarks:
9



(1) If A−Mod is equivalent to B−Mod then A−mod is equivalent to B−mod. This is because tensoring

with a progenerator preserves the property of being f.g, because progenerators are by definition f.g.

But A−mod being equivalent to B −mod does not imply that A−Mod is equivalent to B −Mod.

This is because R − mod need not be an abelian category. However, if A and B are Noetherian

algebras, then we do get the second implication. Usually, we deal with Noetherian algebras.

(2) The version of Morita theory presented here is the simplest kind. There are versions for other

mathematical objects, for example derived categories.

(3) A property which is invariant under Morita equivalence is called a Morita invariant. We have seen

that Z(A) is a Morita invariant. Other Morita invariants include K0(A) and HH∗(A) (to be defined

below). In attempts to generalise algebraic geometry to noncommutative rings, it is believed that any

“geometric” property should be Morita invariant (see [Gin05, Section 2.2]). Thus, Morita invariance

is rather important.

Exercises 2.21. Exercises on Morita theory.

(1) Complete the proof of Lemma 2.8.

(2) Let Ai and Bi be rings. Show that if A1 is Morita equivalent to B1 and A2 is Morita equivalent to

B2 then A1 ×A2 is Morita equivalent to B1 ×B2.

(3) If R ∼= S then R and S are Morita equivalent. Exhibit a progenerator SQR which realises an

equivalence R−Mod → S −Mod.

(4) Let S be a simple algebra (that is, S has no nontrivial two-sided ideals). Let G be a finite group

acting linearly on S. Show that the ring of invariants SG is Morita equivalent to the group ring S ∗G

of G with coefficients in S (the multiplication in this ring is defined by s1g1 · s2g2 = s1g1(s2)g1g2).

(Hint: S ∗G is also a simple algebra.)

(5) Let R be an arbitrary algebra. Let F : R −Mod → Vectk denote the forgetful functor. Show that

Nat(F, F ) is a ring, isomorphic to R.

3. Hochschild homology and cohomology

In this section we will study a homology and cohomology theory for algebras. The idea is to associate a

sequence of abelian groups to an algebra A, and hopefully to obtain interesting invariants in this manner.

This section is partly based on notes by Yu. Berest.

Definition 3.1. Given an algebra A, the enveloping algebra is Ae := A⊗k Aop.

Recall that Ae −Mod is equivalent to A−Bimod. It is sometimes useful to think of a bimodule as a left

Ae–module.

Let A be a k–algebra and M an A–bimodule.
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Definition 3.2. The nth Hochschild homology of A with coefficients in M is the vector space

Hn(A,M) = TorA−Bimod
n (M, A).

The nth Hochschild cohomology of A with coefficients in M is the vector space

Hn(A, M) = Extn
A−Bimod(A,M).

Aim: to calculate these, and see if they give interesting invariants.

Note that it is not immediately clear that the Tor makes sense, since we regard the category A−Bimod as

Ae−Mod, and the tensor product of two left R–modules doesn’t make sense for a general ring R. However,

in the case R = Ae, we have an isomorphism R ∼= Rop given by a ⊗ b 7→ b ⊗ a. In this way, we can regard

an A–bimodule M as a right Ae–module, and so we have the tensor product M ⊗Ae A, and the definition of

Hn(A, M) makes sense.

Exercise 3.3. If M and N are A–bimodules, check that M ⊗Ae N and N ⊗Ae M are naturally isomorphic,

and hence conclude for all n that TorA−Bimod
n (M,N) ∼= TorA−Bimod

n (N, M) naturally in M and N .

We need a projective resolution of A in the category of A–bimodules. There are many possible choices,

and in fact we will use two different ones.

For an element a1 ⊗ · · · ⊗ an ∈ A⊗(n+1), we often write (a1, . . . , an) instead. Another traditional way of

writing this is [a1| · · · |an], but we will not use this notation.

We define Cbar
n (A) := A⊗(n+2) and we define bn : Cbar

n (A) → Cbar
n−1(A) by

bn(a0, . . . , an+1) =
n∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , an+1).

This is clearly a bimodule map, where we give Cbar
n (A) the structure of an A–bimodule via left and right

multiplication on the first and last factors of the tensor product respectively. We want to show that

Cbar
∗ (A) := · · · → A⊗(n+2) → A⊗(n+1) → · · · → A⊗2 → A → 0

is a free resolution of A in the category A− Bimod.

First, it is necessary to check that Cbar
∗ (A) is a complex, that is, bn−1bn = 0. This calculation is left as

an exercise. As an example, we show what happens in the lowest degree:

b1b2(a0, a1, a2) = b1((a0a1, a2)− (a0, a1a2)) = (a0a1)a2 − a0(a1a2) = 0

using associativity of A. In higher degrees, the terms cancel in pairs in a similar way.

Now we prove that Cbar
∗ (A) is an exact complex in degree ≥ 0. For n ≥ 2, define s : A⊗n → A⊗(n+1)

by s(a1, . . . , an) = (1, a1, . . . , an). We check that this is a homotopy between the identity map Cbar
∗ (A) →

11



Cbar
∗ (A) and zero. We have

(bs + sb)(a0, . . . , an) = b(1, a0, . . . , an) + s

n−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . an)

= (a0, . . . , an) +
n−1∑

i=0

(−1)i+1(1, a0, . . . , aiai+1, . . . an) +
n−1∑

i=0

(−1)i(1, a0, . . . , aiai+1, . . . an)

= (a0, . . . , an)

= (id− 0)(a0, . . . , an)

as required.

Therefore, the complex

· · · → A⊗(n+2) → A⊗(n+1) → · · · → A⊗3 → A⊗2,

with differential b, is exact.

Finally, we check that each term is a projective Ae–module. Indeed, A⊗(n+2) = A⊗kA⊗n⊗kA ∼= Ae⊗kA⊗n

as left Ae–modules. This is just a direct sum of (possibly infinitely many) copies of Ae, so it is a free Ae–

module.

We conclude that Cbar
∗ (A) is a projective (and in fact free) resolution of A in the category A − Bimod.

Thus, Hochschild homology and cohomology can be computed using the following formulas.

Hn(A, M) = Hn(M ⊗Ae Cbar
∗ (A))

Hn(A, M) = Hn(HomAe(Cbar
∗ (A),M))

Example 3.4. Take A = k. Then for all n, A⊗(n+2) is isomorphic to A via (a0, . . . , an+1) 7→ a0a1 · · · an+1.

The differential b becomes the identity map A⊗(n+2) → A⊗(n+1) if n is even, and the zero map if n is odd.

Therefore, the bar resolution becomes:

· · · // k
id // k

0 // k
id // k

0 // k // 0

Tensoring with M gives

· · · // M
id // M

0 // M
id // M

0 // M // 0

From this we conclude that H0(A,M) = M and Hi(A,M) = 0 if i > 0. Note that we can check that this is

correct because k − Bimod is the same as k −Mod as everything is k–linear, and so all higher Tors vanish.

Similarly, we calculate H0(A,M) = M and Hi(A,M) = 0 if i > 0.

3.1. Hochschild cochain complex. Hochschild cohomology of a bimodule M is calculated from the com-

plex HomAe(Cbar
∗ (A),M). A better way of writing the space HomAe(Cbar

n (A),M) is HomAe(Ae⊗kA⊗n,M) ∼=
Homk(A⊗n,M).

12



Definition 3.5. Cn(A,M) = Homk(A⊗n, M) is called the space of Hochschild n–cochains with values in

M .

The differential d : Cn(A,M) → Cn+1(A, M) induced from b may be computed. It is left as an exercise

to verify that for f ∈ Cn(A,M),

df(a1, . . . , an+1) = a1f(a2, . . . , an) +
n∑

i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1f(a1, . . . , an)an+1.

The complex (C•(A,M), d) computes Hochschild cohomology of A with coefficients in M , and is referred to

as the Hochschild cochain complex.

3.2. Reduced bar complex. Before computing some more examples, we mention another projective res-

olution of A in A− Bimod. It is a quotient of the bar complex. We define it here because it is used in the

paper [CQ95a]. It also illustrates that there are many different ways of calculating Hochschild (co)homology.

Definition 3.6. Define

C
bar

n (A) = A⊗k A
⊗n ⊗k A ∼= Ae ⊗k A

⊗n

where A is the vector space A/k.1A.

Checking the following facts is left as an exercise: b descends to a well-defined bimodule map C
bar

n (A) →
C

bar

n−1(A). Furthermore, the complex (C
bar

∗ (A), b) is contractible, using the same s as before. Therefore,

C
bar

∗ (A) is a projective resolution of A in the category A− Bimod.

Definition 3.7. C
bar

∗ (A) is called the reduced bar complex of A.

Similarly, we have the reduced Hochschild cochain complex of a module M , whose nth term is Homk(A
⊗n

,M).

Later, we will interpret A⊗k A
⊗n

as the space of noncommutative n–forms on A, so the reduced bar complex

will give a relationship between noncommutative forms and Hochschild theory.

Example 3.8. For A = k, we have A = 0. So the reduced bar complex of A has just one term, in degree 0,

and we therefore obtain Hi(A,M) = M if i = 0 and Hi(A,M) = 0 if i > 0, as before.

3.3. Morita invariance. Now we prove Morita invariance, which is very useful for calculating Hochschild

homology and cohomology.

Theorem 3.9. If A and B are algebras and M is an A–bimodule, and BPA and AQB are bimodules such

that P ⊗A Q ∼= B as B–bimodules, and Q⊗B P ∼= A as A–bimodules, then

Hn(A,M) ∼= Hn(B, P ⊗M ⊗Q)

Hn(A,M) ∼= Hn(B, P ⊗M ⊗Q)

for all n.
13



Proof. We define a functor A− Bimod → B − Bimod by M 7→ P ⊗M ⊗Q. This is an equivalence because

we can define an inverse by N 7→ Q ⊗ N ⊗ P . Since it is an equivalence of module categories, it preserves

Ext and Tor. Furthermore, we have P ⊗A⊗Q ∼= A and Q⊗B ⊗ P ∼= B by the hypothesis. ¤

Corollary 3.10. If A is Morita equivalent to B then for all n,

Hn(A,A) ∼= Hn(B, B)

Hn(A,A) ∼= Hn(B, B)

Example 3.11. Regarding kn as a space of row vectors, we have kkn
Mn(k). Clearly, kn is a progenerator in

k −Mod, so this kn realises a Morita equivalence. The inverse equivalence is realised by tensoring with the

module Homk(kn, k) of column vectors. The equivalence of bimodules k − Bimod → Mn(k)− Bimod which

we obtain from Theorem 3.9 sends kp to Mn(k)p. Thus, every f.g. Mn(k)–bimodule is isomorphic to Mn(k)p

for some p, and from Theorem 3.9 we obtain

Hi(Mn(k), Mn(k)p) ∼=





kp i = 0

0 i > 0.

3.4. Low-dimensional calculations. In this section, we calculate Hi(A,M) and Hi(A, M) for i = 0, 1, 2

and certain choices of A and M , in order to get a flavour of what Hochschild homology and cohomology are

like.

First, we look at H0(A,M). By definition, this is M ⊗Ae A. It is not immediately clear what this is. It

can be computed using the bar resolution. The relevant part of the bar resolution is

A⊗3 → A⊗2 → 0

which we regard as

Ae ⊗k A → Ae → 0.

Then M ⊗Ae A is M/imb where b : M ⊗k A → M is the map induced from the Hochschild differential. We

can calculate explicitly what this is. If m⊗a ∈ M⊗k A, then m⊗a corresponds to m⊗ (1, a, 1) ∈ M⊗k A⊗3.

This is taken by b to m ⊗ ((a, 1) − (1, a)) ∈ M ⊗Ae Ae. According to the definition of the right Ae–action

on M , this corresponds to ma− am ∈ M . Thus, M ⊗Ae A is M/[A, M ] where [A,M ] is the subspace of M

consisting of {ma− am : m ∈ M, a ∈ A}.
Now we calculate H0(A,M). This is the kernel of d : C0(A,M) → C1(A,M) given by d(m) = am−ma.

Therefore

H0(A, M) = {m ∈ M : am = ma ∀a ∈ A}.

In particular, H0(A,A) = Z(A).
14



Next, the map d : C1(A, M) → C2(A,M) is given by df(a, b) = af(b)− f(ab)− f(a)b. The kernel of this

map is

{f : A → M : f(ab) = af(b) + f(a)b ∀a, b ∈ A}

which is also known as DerA(A,M). As computed above, the image of d : C0(A, M) → C1(A,M) consists of

those f : A → M of the form f(m) = am−ma for some fixed m ∈ M . This is the space of inner derivations

of M , denoted InnA(M). Thus,

H1(A,M) = DerA(A,M)/InnA(M).

If A is an algebra, the space H2(A, A) is related to infinitesimal deformations of A. This section is taken

from notes from a lecture by Stroppel.

Let k[ε] denote the algebra k[x]/(x2).

Definition 3.12. If A is an algebra, an infinitesimal deformation of A is an associative k[ε]–bilinear product

∗ on the vector space A⊗k k[ε] such that there is a bilinear f : A×A → A with

a ∗ b = ab + f(a, b)ε

for all a, b ∈ A.

The fact that ∗ is associative gives a condition on f . For a, b, c ∈ A, we have

(a ∗ b) ∗ c = (ab + f(a, b)ε) ∗ c = abc + f(ab, c)ε + f(a, b)cε

and

a ∗ (b ∗ c) = a ∗ (bc + f(b, c)ε) = abc + f(a, bc)ε + af(b, c)ε.

From this, we get

f(ab, c) + f(a, b)c = f(a, bc) + af(b, c)

for all a, b, c ∈ A. By the k[ε]–bilinearity, we see that ∗ is associative if and only if f ∈ ker(d : C2(A, A) →
C3(A,A)).

Now suppose we have two infinitesimal deformations ∗ and ∗′ with a ∗ b = ab + f(a, b)ε and a ∗′ b =

ab + g(a, b)ε for a, b ∈ A. Then ∗ and ∗′ are equivalent if there exists a k[ε]–bilinear isomorphism ψ :

(A ⊗ k[ε], ∗) → (A ⊗ k[ε], ∗′) with ψ(a) = a + γ(a)ε for all a ∈ A, for some γ : A → A. If ∗ and ∗′ are

equivalent, we obtain

ψ(a ∗ b) = ψ(ab + f(a, b)ε) = ab + γ(ab)ε + f(a, b)ε

ψ(a) ∗′ ψ(b) = (a + γ(a)ε) ∗′ (b + γ(b)ε) = ab + g(a, b)ε + γ(a)bε + aγ(b)ε.

Thus, ∗ and ∗′ are equivalent if and only if f − g = dγ for some γ ∈ C1(A,A). We conclude that H2(A,A)

is in bijection with equivalence classes of infinitesimal deformations of A.
15



In general, H2(A, M) may be identified in a similar way with the vector space of k–algebra extensions of

the form

0 → M → E → A → 0,

where M is an ideal in the algebra E with M2 = 0, modulo the equivalence relation that two such extensions

are equivalent if there is a commutative diagram of the form

E

ÃÃA
AA

AA
AA

λ

²²

0 // M

>>||||||||

ÃÃB
BB

BB
BB

B A // 0

E′

>>~~~~~~~~

with λ an algebra isomorphism. The isomorphism of H2(A,M) with this space may be realised by sending

a cochain f : A⊗2 → M to the vector space M ⊕ A with the product (m1, a1)(m2, a2) = (m1a2 + a1m2 +

f(a1, a2), a1a2). The details will be given in Section 7 below.

Now let us consider H1(A,A). We calculate A⊗Ae Cbar
∗ (A). It is an exercise to check that this comes out

to be the following complex

· · ·A⊗3 → A⊗2 → A → 0

with differential

dH(a0, . . . , an) =
n−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , an) + (−1)n(ana0, a1, . . . , an−1).

The space H1(A,A) is the first homology group of this complex, ie. ker(dH : A⊗2 → A)/Im(dH : A⊗3 →
A⊗2). If A happens to be commutative, this has a particularly nice description. In this case, dH(a0, a1) =

a0a1 − a1a0 = 0 and dH(a0, a1, a2) = (a0a1, a2)− (a0, a1a2) + (a2a0, a1). So

H1(A, A) =
A⊗k A

〈ab⊗ c− a⊗ bc + ca⊗ b : a, b, c ∈ A〉 .

If we write adb for a⊗ b ∈ A⊗k A, then we get

H1(A,A) = spank{adb : a, b ∈ A}/〈ad(bc) = abdc + acdb : a, b, c ∈ A〉,

which may also be described as the free A–module generated by the symbols db, b ∈ A, factored by the

submodule generated by the following relations for a, b ∈ A, α ∈ k:

d(α) = 0, d(a + b) = da + db, d(ab) = adb + bda. (1)

It may seem wrong that we are suddenly thinking of H1(A,A) as an A–module. However, it is easy to check

from the definition that, for any algebra A, Hi(A,A) always has a natural Z(A)–module structure. Hence if

A is commutative, H1(A,A) is an A–module.
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Definition 3.13. Let A be a commutative k–algebra. The A–module Ω1
Käh(A) freely generated by {db : b ∈

A} with the relations (1) is called the module of Kähler differentials of A.

Now we wish to compare Kähler differentials and global differential forms.

3.5. Differential forms. Let A = k[X1, X2, . . . , Xn]/I where I is a radical ideal. Then A = k[X], the

coordinate ring of the affine algebraic set in kn given by the vanishing of the polynomials in I. For each

p ∈ X, we have the maximal ideal mp ⊂ k[X] and the cotangent space T ∗p X := mp/m2
p at p. By definition,

the tangent space to X at p is the dual TpX := (mp/m2
p)∗. We assume that X is irreducible.

Given f ∈ k[X] and x ∈ X, we define dxf ∈ mx/m2
x by dxf := (f − f(x)) mod m2

x. The differential of

f is then defined to be the function df : X → ⊔
x∈X T ∗p X which sends x to dxf . Following the exposition in

[Sha94, III, 5.1], we define Φ[X] to be the space of all functions φ : X → ⊔
x∈X T ∗p X such that φ(p) ∈ T ∗p X

for all p ∈ X. These definitions also make sense for any open subset U of X.

We then make the following definition.

Definition 3.14. A function φ ∈ Φ[X] is called a global differential form on X if for every p ∈ X there exists

an open U containing p such that φ|U belongs to the k[U ]–submodule of Φ[U ] generated by {df : f ∈ k[U ]}.

Differential forms are defined in the same way for every open subset of X, and it is clear from the nature

of the definition that they form a sheaf Ω1
X of OX–modules.

There is a natural map of k[X]–modules

Ω1
Käh(A) → Ω1

X(X) = Γ(X, Ω1
X)

defined by adf 7→ (x 7→ a(x)dxf) for all a, f ∈ A and all x ∈ X. This is a map of A–modules, and we now

show that it is always surjective when X is irreducible.

Let φ ∈ Ω1
X(X). Then there exists an open cover {Uα} of X and aα,i, fα,i ∈ k[Uα] with φ|Uα =

∑
i aα,idfα,i

for all α. By shrinking Uα if necessary, we may replace Uα by Urα = {rα 6= 0} for some rα ∈ A. By

compactness of the Zariski topology, we may assume that the cover is finite. We have aα,i = a′α,i/rk
α for

some k ∈ N and a′α,i ∈ A, and fα,i = f ′α,i/r`
α for some ` ∈ N and some f ′α,i ∈ A. By the usual quotient rule

for differentiation, which is easy to check from the definition of dpf , we have dp(f/r) = r−2(rdpf − fdpr).

Using this, we see that there is some power gα of rα such that gαφ =
∑

i a′′α,idf
′′
α,i on Uα, with a′′α,i, f

′′
α,i ∈ A.

Since the Uα were chosen to be a cover, the ideal (gα) generated by the gα must be the whole of A. Therefore,

there exist hα ∈ A with
∑

α hαgα = 1. We then have

φ =
∑
α

hαgαφ =
∑
α

∑

i

hαa′′α,idf
′′
α,i

on
⋂

α Uα. This is a nonempty dense open set because X is assumed to be irreducible. We will therefore be

done, provided we can show that if
∑

vi(x)dxwi = 0 for all x in some dense open set, then
∑

vi(x)dxwi = 0

for all x. To see this, we note that for w ∈ A and x ∈ X, dxw = 0 if and only if
∑N

i=1
∂ŵ
∂Xi

(x)(Xi − xi) = 0
17



where ŵ is an element of k[X1, . . . , Xn] such that ŵ + I = w. Therefore, the condition
∑

vi(x)dxwi = 0 is

equivalent to the vanishing of a certain continuous function at x, and if this function vanishes on a dense U ,

then it vanishes on the whole of X.

We now wish to show that the natural map Ω1
Käh(A) → ΩX(X) need not be injective. We will use the

following universal property of Ω1
Käh(A).

Proposition 3.15. If M is an A–module and δ : A → M is a derivation then there exists a unique module

map δ̂ : Ω1
Käh(A) → M such that δ̂(df) = δ(f) for all f ∈ A.

The proof of the proposition is an exercise. We say that d : A → Ω1
Käh(A) is the universal derivation

from A to an A–module.

Corollary 3.16. If A = k[X1, . . . , Xn]/(f1, . . . , fr) then Ω1
Käh(A) may be expressed as the following quotient

of a free module:

Ω1
Käh(A) ∼= A · dX1 ⊕A · dX2 ⊕ · · · ⊕A · dXn

A · df1 + · · ·A · dfr

where dfi =
∑N

j=1
∂fi

∂Xj
dXj.

Proof. Show that the given module satisfies the universal property. ¤

Example 3.17. Let A = k[x, y]/(y2 − x3) = k[C] where C = V (y2 − x3) ⊂ C2. Then Ω1
Käh(A) is the free

module on dx and dy, subject to the single relation 2ydy − 3x2dx = 0. Let ω = 2xdy − 3ydx. We will

show that ω 6= 0. Indeed, if ω = 0 then we get an equality 2xdy − 3ydx = a(x, y)(2ydy − 3x2dx) in the free

module on dx and dy, and this leads to a contradiction. Therefore, ω 6= 0. However, yω = 2xydy− 3y2dx =

3x3dx − 3x3dx = 0. Therefore, ω(x, y) = 0 for all (x, y) ∈ C with y 6= 0. Also, if y = 0 then x = 0

and so ω(0, 0) = 0. Therefore, ω(x, y) = 0 for all points (x, y) of C, and so ω is in the kernel of the map

Ω1
Käh(A) → Ω1

C(C). Thus, this map need not be injective.

However, if X is a smooth variety then the map Ω1
Käh(A) → Ω1

X(X) is always injective. This is similar to

the proof of surjectivity, using the fact that a system of local parameters may be found in a neighbourhood

of each point. See [Sha94, Proposition 2, III 5.2] for a proof. Therefore,

Proposition 3.18. If A = k[X] is the coordinate ring of a smooth affine variety then Ω1
Käh(A) ∼= Ω1

X(X).

For such A, we have shown that H1(A,A) = Ω1
Käh(A). Also, H1(A,A) = Der(A)/Inn(A) = Der(A),

which may be viewed as the global sections of the tangent sheaf TX. These facts generalise to the following

important theorem.
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Theorem 3.19 (Hochschild-Kostant-Rosenberg). If A = k[X] is the coordinate ring of a smooth affine

variety then

HHi(A) =
i∧

A

Ω1
Käh(A) ∼= Ωi

X(X)

Hi(A, A) =
i∧

A

Der(A) ∼= Γ(X,

i∧
TX)

for all i ≥ 0.

We won’t prove the Hochschild-Kostant-Rosenberg Theorem. A proof may be found in [Gin05, Section

9.2] or [Lod92, Theorem 3.4.4].

Thus, Hochschild homology may be viewed as a generalisation of differential forms to noncommutative

algebras. However, there is no obvious way to define “d” on Hochschild homology. Therefore, if we wish to

define a calculus of differential forms on noncommutative algebras, we need to find another approach. This

is the goal of the first part of [CQ95a], which we explain in the next section.

Exercises 3.20. Exercises on Hochschild (co)homology and differential forms.

(1) For any A, show that HHi(A) is naturally a Z(A)–module.

(2) Show that A 7→ HHi(A) is a functor from the category of algebras to the category of vector spaces,

but A 7→ Hi(A,A) is not.

(3) Use Morita invariance of HH0 to show that [gln, gln] = sln.

(4) Show that if HH0(A) = 0 then A has no nonzero finite-dimensional representations.

(5) Show that the complex A⊗Ae Cbar
∗ (A) is isomorphic to the complex whose nth term is A⊗(n+1) and

whose differential is given by the formula

dH(a0, . . . , an) =
n−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . an) + (−1)n(ana0, a1, . . . , an−1).

(6) Compute Ω1
X(X) where X = P1.

(7) Prove Proposition 3.15.

(8) Prove Proposition 3.16.

4. Noncommutative forms

Let A be a commutative k–algebra. Recall from Proposition 3.15 that Ω1
Käh(A) may be characterised

by the property that d : A → Ω1
Käh(A) is a derivation, and for every derivation δ : A → M , there exists a

unique δ̂ : Ω1
Käh(A) → M with δ̂d = δ. This can be expressed in the following way

DerA(M) ∼= HomA−Mod(Ω1
Käh(A),M)
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for every A–module M . This isomorphism is natural in M , so can be viewed as an isomorphism of functors

A−Mod → Vectk

DerA(−) ∼= HomA−Mod(Ω1
Käh(A),−).

In the language of category theory, the object Ω1
Käh(A) is said to represent the functor M 7→ DerA(M).

For a noncommutative algebra A and a left A–module M , DerA(M) doesn’t make sense. However, if M

is a bimodule, we may define

DerA(M) := {d : A → M : d(ab) = adb + (da)b ∀a, b ∈ A}.

We may then ask the following question:

Does there exist an A–bimodule Ω1
A which represents the functor M → DerA(M) form A − Bimod to

Vectk?

(Notice that we don’t yet know the answer to this, even if A is commutative, because even for a commu-

tative ring, bimodules and modules are quite different notions. For example, if A = k[X], an A–bimodule is

a A⊗Aop = k[X,Y ]–module.)

The answer to the question is yes. We may define the bimodule Ω1
A as follows. Let A be an algebra and

A = A/k · 1A, a vector space. Define

Ω1
A = A⊗k A.

Equip this with the natural left A–module structure, and define the right A–module structure by

(a⊗ b)c = a⊗ bc− ab⊗ c

for all a, b, c ∈ A, where (−) denotes the quotient map. It can be quickly checked that this right action is

well-defined, and that it really makes Ω1
A into a right A–module and a bimodule.

Proposition 4.1. There is an isomorphism of functors

DerA(−) ∼= HomA−Bimod(Ω1
A,−).

Proof. Given a bimodule M , the map DerA(M) ∼= HomA−Bimod(Ω1
A,M) is defined by δ 7→ (a⊗ b 7→ aδ(b)),

while the map HomA−Bimod(Ω1
A,M) → DerA(M) is defined by ψ 7→ (a 7→ ψ(1 ⊗ a)). Everything has been

set up so that these maps are well-defined and provide a natural isomorphism. ¤

To define forms of higher degree, we need the notion of a differential graded algebra.

4.1. Differential graded algebras.

Definition 4.2. A differential graded algebra, or dga for short, is a graded k–algebra

A =
⊕

i∈Z
Ai
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together with a linear map d : A → A such that d(Ai) ⊂ Ai+1 for all i, and d2 = 0, satisfying the Leibniz

rule:

d(ab) = da · b + (−1)iadb

for all a ∈ Ai, b ∈ Aj, i, j ∈ Z.

For a homogeneous element a ∈ Ai, we often write i = |a| as shorthand for the degree of a.

Examples 4.3. Here are some examples of dgas.

(1) Any algebra A is a dga if we take A0 = A and Ai = 0 for i 6= 0.

(2) A more interesting example: if X is an affine variety then
⊕∞

i=0 Ωi
X(X) is a dga with product given

by the wedge product of forms, and the usual de Rham differential d.

(3) If A is an algebra and I is a 2–sided ideal of A, we can define a dga A−1⊕A0 with A−1 = I, A0 = A,

and the differential given by the inclusion map I ↪→ A. The Leibniz rule has to be checked.

(4) If A is an algebra and δ : A → M is a derivation, with M a bimodule over A, then there is a dga

A0 ⊕A1 with A0 = A, A1 = M and the differential given by δ : A → M .

(5) If (V•, d) is any complex of vector spaces, a linear map f : V → V is said to have degree n, n ∈ Z, if

f(Vi) ⊂ Vi+n for all i. We can construct a dga of linear maps V• → V• via the following lemma.

Lemma 4.4. Let (V•, d) be a complex of vector spaces, where d has degree +1. For each n ∈ Z, let En be

the space of all linear maps f : V → V of degree n. Then
⊕

n∈ZEn is a dga with multiplication given by

composition of functions and the differential defined by

(∂ψ)(w) = d(ψ(w))− (−1)nψ(dw)

for ψ ∈ En and w ∈ Vi, i ∈ Z.

Proof. To show that ∂2 = 0, for ψ ∈ En we have

∂2ψ = ∂(∂ψ) = ∂(dψ − (−1)nψd) = d(dψ − (−1)nψd)− (−1)n+1(dψ − (−1)nψd)d = 0,

where we used the fact that ∂ψ has degree n + 1.

To show that the Leibniz rule holds, we calculate for any φ ∈ E|φ| and ψ ∈ E|ψ|,

∂φ · ψ + (−1)|φ|φ∂ψ = (dφ− (−1)|φ|φd)ψ + (−1)|φ|φ(dψ − (−1)|ψ|ψd) = dφψ − (−1)|φ|+|ψ|φψd = ∂(φψ)

because |φψ| = |φ|+ |ψ|. ¤

4.2. The dg algebra of noncommutative forms. Let A be a k–algebra. In [CQ95a, Section 1], it is

shown that there is a universal dga ΩA with (ΩA)0 = A. We can think of ΩA as a kind of dg-enveloping

algebra of A, or the dg-algebra freely generated by A. This dg-algebra will be constructed as the dg-algebra

of noncommutative forms on A. The notion of noncommutative forms is originally due to Connes. They are

defined as follows.
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Definition 4.5. Given an algebra A, let A = A/k1A as before. Define

Ωn(A) = A⊗k A
⊗n

for n ≥ 0, and set Ωn(A) = 0 for n < 0. Call Ωn(A) the space of differential n–forms on A. Define

ΩA =
⊕

n∈Z
Ωn(A)

and define d : Ωn(A) → Ωn+1(A) by

d(a0, a1, . . . , an) = (1, a0, a1, . . . , an)

for ai ∈ A.

Note that in the definition of d, we write (a0, a1, . . . , an) for a0⊗ a1⊗ · · · ⊗ an. Also, a1, . . . , an are really

elements of A, but it is easy to check that d given by the above formula is well-defined.

To give ΩA the structure of a dg-algebra, we will use the following lemma.

Lemma 4.6. In any dg algebra B, the following identities hold:

d(a0da1 · · · dan) = da0da1 · · · dan (2)

(a0da1 · · · dan)(an+1dan+2 · · · dak) = (−1)na0a1da2 · · · dak +
n−1∑

i=0

(−1)n−ia0da1 · · · d(aiai+1) · · · dan (3)

where a0, . . . , ak ∈ B.

Proof. Statement (2) is immediate from the Leibniz rule. Statement (3) follows from expanding d(aiai+1)

via the Leibniz rule and cancelling terms pairwise. ¤

Proposition 4.7. [CQ95a, Proposition 1.1] The complex (ΩA, d) is a dg algebra under the product

(a0, . . . , an)(an+1, . . . , ak) =
n∑

i=0

(−1)n−i(a0, . . . , aiai+1, . . . , an). (4)

There is a natural map of algebras i : A → Ω0(A). Furthermore, if Γ =
⊕

i Γi is a dg algebra, and ψ : A → Γ0

is an algebra map, then there exists a unique morphism ψ′ : ΩA → Γ of dga’s such that ψ′ ◦ i = ψ.

Proof. The following argument is due to Cuntz and Quillen. The idea is to construct the multiplication on

ΩA by realising ΩA as a subalgebra of a dg algebra.

Let E be the dga of linear maps from the complex ΩA to itself. For a ∈ A, define `a ∈ E by `a(a0, . . . , an) =

(aa0, a1, . . . , an). Then define a graded linear map λ : ΩA → E by

λ(a0, . . . , an) = `a0∂(`a1) · · · ∂(`an).

To check that λ is well-defined, we need to check that ∂(`a) depends only on the class of a ∈ A. This

essentially reduces to checking that ∂(1A)(a0, . . . , an) = 0 for all (a0, . . . , an), which is straightforward.
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Now we show that Im(λ) is a dg-subalgebra of E. From (2), we see that Im(λ) is closed under d. From

(3), we see that Im(λ) is closed under multiplication. It follows that Im(λ) is a dg-subalgebra of E.

Now define a linear map µ : E → ΩA by µ(ψ) = ψ(1A) for ψ ∈ E. We verify that µλ is the identity on

ΩA. For this, we need to show that `a0∂(`a1) · · · ∂(`an
)(1A) = (a0, a1, . . . , an) for all a0, . . . , an ∈ A. Now,

∂(`an
)(1A) = d`an

(1A)− (−1)|`an |`an
d(1A) = (1, an)

and

∂(`an−1)(1, an) = (1, an−1, an)− `an−1d(dan) = (1, an−1, an),

and continuing inductively, we obtain

`a0∂(`a1) · · · ∂(`an
)(1A) = (a0, a1, . . . , an)

as desired. This shows that µλ = idΩA. Therefore, λ : ΩA → Im(λ) is injective, hence it is an isomorphism of

graded vector spaces. Therefore, we may use the product on Im(λ) to make ΩA into a dg-algebra. Formula

(3) applied in the dg-algebra Im(λ) then immediately implies that we get the product (4). We also need to

check that the differential induced on ΩA via the isomorphism λ coincides with the original differential d.

To see this, we should check that

µ∂λ(a0, . . . , an) = d(a0, . . . , an)

for all a0, . . . , an ∈ A. This is simple to check using the definitions of µ and λ.

We have shown that (ΩA, d) becomes a dg-algebra under the product (4). It remains to check the universal

property. For this, suppose Γ is a dg-algebra and ψ : A → Γ0 is a map of algebras. Define ψ′ : ΩA → Γ by

ψ′(a0, a1, . . . , an) = ψ(a0)dψ(a1) · · · dψ(an). (5)

To see that ψ′ is the unique dg-algebra homomorphism which extends ψ, we note that

(a0, . . . , an) = a0da1da2 · · · dan

for all a0, . . . , an ∈ A. This follows from the definition of the product on ΩA. Therefore, if ψ′ is a dg-algebra

map which agrees with ψ in degree 0, it must be given by (5). It remains to check that ψ′ preserves d and

multiplication. This can be checked using identities (2) and (3) in the dg-algebra Γ. ¤

4.3. Relative forms. Now we study the relative version of differential forms, following [CQ95a, Section 3].

Let S and A be k–algebras. We say that A is an S-algebra if there exists an algebra morphism S → A.

If A is an S–algebra, we will identify S with its image in A, and we write A/S for the quotient vector space,

which is also an S–bimodule.

Definition 4.8. Let A be an S–algebra. The space of differential n–forms on A relative to S is

Ωn
S(A) = A⊗S (A/S)⊗S · · · ⊗S (A/S)

where there are n copies of A/S in the tensor product.
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Define a graded vector space ΩSA by

ΩSA :=
∞⊕

i=0

Ωn
S(A).

In order to make ΩSA into a dga, we realize it as a quotient of ΩA. This requires the notions of dg ideal

and quotient dg-algebra, which generalize the notions of ideal and quotient for ordinary algebras.

Definition 4.9. Let E =
⊕

i∈ZEi be a dg-algebra with differential d. A graded subspace I =
⊕

i∈Z Ii ⊂ E

is called a dg ideal if it is an ideal, and d(I) ⊂ I. If I ⊂ E is a dg-ideal, the quotient dg-algebra is

the vector space
⊕

i∈Z(Ei/Ii) equipped with the differential induced from d and the multiplication being the

multiplication on E/I.

Proposition 4.10. For each n ≥ 0, Ωn
S(A) is the quotient space of Ωn(A) by the subspace spanned by the

elements

(a0, . . . , ai−1s, ai, . . . , an)− (a0, . . . , ai−1, sai, . . . , an),

and

(a0, . . . , ai−1, s, ai+1, . . . , an)

for a0 ∈ A, ai ∈ A (1 ≤ i ≤ n), s ∈ S.

Proof. Define a linear map Ωn(A) → Ωn
S(A) via (a0, a1, . . . , an) 7→ (a0, a1 + S, . . . , an + S). The definition

of tensor product shows that the kernel is spanned by the given relations. ¤

We see from the definition of d that ΩSA is a quotient of ΩA by a dg ideal, and hence it becomes a

dg-algebra. In fact, it is a dg S–algebra, that is, there is a natural map S → ΩS(A) which is a map of

dg-algebras, which amounts to saying that the image of S is contained in the kernel of d.

Proposition 4.11. [CQ95a, Proposition 2.1] The dg-algebra ΩSA is the universal dg S–algebra generated

by A, in the sense that if Γ is a dg S–algebra and ψ : A → Γ is a map of S–algebras, then there exists a

unique map of dg S–algebras ψ′ : ΩSA → Γ satisfying ψ′|Ω0
S(A) = ψ.

Proof. An exercise, using Proposition 4.7. ¤

4.4. Other descriptions of ΩSA. Now we give some other descriptions of ΩSA, which can be very useful

in calculations. Everything we say for ΩSA also holds for ΩA, since ΩA = ΩSA with S = k.

Definition 4.12. Let A be an algebra and M an A–bimodule. The tensor algebra TA(M) of M over A is

the graded algebra

TA(M) =
∞⊕

i=0

TA(M)i =
∞⊕

i=0

M ⊗A M ⊗A · · · ⊗A M︸ ︷︷ ︸
i copies

where TA(M)0 := A, with multiplication given by concatenation.
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This algebra has the following universal property. If A is an algebra and R is an A–algebra and ψ : M → R

is a map of A–bimodules, then there exists a unique A–algebra map ψ′ : TA(M) → R such that the restriction

of ψ′ to M = TA(M)1 is ψ.

The map ψ′ in the universal property is given explicitly by ψ′(a0 ⊗ a1 · · · ⊗ an) = ψ(a0)ψ(a1) · · ·ψ(an).

Proposition 4.13. [CQ95a, Proposition 2.3] Let A be an S–algebra. Then

ΩSA ∼= TA(Ω1
S(A))

as graded S–algebras.

Proof. The universal property of the tensor algebra given a linear map

λn : TA(Ω1
S(A))n → Ωn

S(A)

for every n, defined by ω1 ⊗ · · · ⊗ ωn 7→ ω1ω2 · · ·ωn. It suffices to show that λn is an isomorphism for every

n. In degrees n = 0, 1, it is the identity. We show by induction that it is an isomorphism in all degrees.

Suppose λn is an isomorphism. Then

TA(Ω1
S(A))n+1 = TA(Ω1

S(A))n ⊗A Ω1
S(A) ∼= Ωn

S(A)⊗A Ω1
S(A)

where the last isomorphism is via λn ⊗ id. But

Ωn
S(A)⊗A Ω1

S(A) = A⊗S (A/S)⊗S · · · ⊗S (A/S)⊗A (A⊗S (A/S))

which is isomorphic to

A⊗S (A/S)⊗S · · · ⊗S (A/S)⊗S (A/S) = Ωn+1
S (A)

via ω ⊗ b0db1 7→ ωb0db1. Therefore, λn+1 is also an isomorphism, as required. ¤

Another way to describe the differential 1–forms is as the kernel of the multiplication map.

Proposition 4.14. [CQ95a, Proposition 2.5] Let A be an S–algebra. There exists a short exact sequence of

A–bimodules

0 // Ω1
S(A)

j
// A⊗S A

m // A // 0

where j(a, b) = a ⊗ b − ab ⊗ 1 and m(x ⊗ y) = xy for all a, x, y ∈ A and all b ∈ A. (In the definition of j,

we use the notation (a, b) for a⊗ b ∈ A⊗k A as before.)

Proof. By definition, m is a bimodule map. It is an exercise to check that j is a well-defined bimodule map.

To see that j is injective, define k : A⊗SA → A⊗S(A/S) to be the projection. Note that k is a linear map with

no extra structure. We have kj = id on Ω1
S(A), and so j is injective. Clearly, im(j) ⊂ ker(m). Now suppose

∑
i ai⊗bi ∈ ker(m). Then

∑
i aibi = 0 so

∑
i ai⊗bi =

∑
i ai⊗bi−

∑
i aibi⊗1 =

∑
i(ai⊗bi−aibi⊗1) ∈ im(j),

and we are done. ¤
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As a special case of Proposition 4.14, we obtain

Ω1(A) = ker(A⊗k A → A),

which is often used as the definition of Ω1(A) in the literature.

5. Applications of noncommutative forms

In [CQ95a], Cuntz and Quillen go on to use noncommutative forms to construct solutions to a variety of

universal problems. Inspired by this, we can define generalized (or “curved”) representations of algebras.

5.1. Generalized representations. The notion of an algebra homomorphism can be weakened to that of

based linear map.

Definition 5.1. If A and B are algebras, a based linear map % : A → B is a linear map % : A → B such

that %(1A) = 1B.

If A and B are S–algebras, a based linear S–map % : A → B is an S–bimodule map % : A → B such that

the diagram

A
%

// B

S

__???????

??ÄÄÄÄÄÄÄ

commutes.

The curvature of a based linear map % : A → B is the linear map ω : A⊗A → B defined by

ω(a⊗ b) = %(ab)− %(a)%(b).

A generalized representation of a k–algebra A is a based linear map % : A → Endk(V ) where V is a

k–vector space.

Based linear S maps correspond to representations of a certain algebra constructed from A. If A is an

S–algebra, then A is an S–bimodule. Therefore, we may form the tensor algebra TS(A) =
⊕∞

i=0 TS(A)i. For

s ∈ S, we write s0 for the copy of s in TS(A)0 = S and s1 for the copy of s in TS(A)1 = A.

Definition 5.2. Let A be an S–algebra. Define

RSA = TS(A)/I

where I is the two-sided ideal generated by the elements s0 − s1 for s ∈ S.

Proposition 5.3. Let A and R be S–algebras. Then based linear maps A → R correspond to S–algebra

maps RSA → R.

Proof. Given a based linear map % : A → R, we define an S–algebra map %̂ via %̂(a1⊗· · ·⊗an) = %(a1) · · · %(an)

in degree n. It is easy to see that this gives a bijective correspondence, as required. ¤
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An important special case of Proposition 5.3 is when we take % : A → A to be the identity. In this case,

there is an induced S–algebra map RSA → A and we define IA to be the kernel of this map, a two-sided

ideal in RSA. Note that RSA/IA ∼= A.

Here is another description of RSA.

Lemma 5.4. If S is a semisimple algebra then RSA ∼= TS(A/S). In particular, if S = k then RkA is free.

Proof. A based linear S–map A → R is the same thing as as S–algebra map S → R together with a map of

A–bimodules A/S → R. But, by the universal property of TS(A/S), this is the same as an S–algebra map

TS(A/S) → R. ¤

Example 5.5. Recall that a quiver is a finite directed graph. This can be viewed as a 4–tuple (Q0, Q1, h, t)

where Q0 is a finite set called the set of vertices of Q, Q1 is a finite set called the set of arrows of Q, and

h, t : Q1 → Q0 are functions assigning to an arrow its head and tail respectively. Note that loops and parallel

edges are allowed. Let n = |Q0| be the number of vertices.

Let S be the semisimple commutative algebra k × k · · · × k where there are n copies of k. Write ei for

the element (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the ith position. Then we may write S =
⊕n

i=1 kei. Any

bimodule M over S satisfies M =
⊕

i,j eiMej , and so is just given by a collection of vector spaces indexed

by {1, 2, . . . , n} × {1, 2, . . . , n}.
We associate such a bimodule MQ to Q by setting eiMQej to be a vector space with a basis given by

the arrows a with h(a) = j and t(a) = i. We may then define the path algebra of Q to be the algebra

kQ := TS(MQ). This is a k–algebra with a basis given by the paths in Q, that is, sequences a1a2 · · · an of

edges such that h(ai) = t(ai−1) for all i. The trivial paths ei also count as paths in Q (they span the degree

0 component of kQ).

We may now ask what a generalized representation of kQ is, relative to S. If we let A = kQ, then A/S

is a vector space spanned by all nontrivial paths in Q. Thus, for each i, j, ej(A/S)ei is the number of paths

from i to j in Q. Therefore, TS(A/S) is the path algebra of the quiver Q, where Q has an arrow i → j for

each nontrivial path i → j in Q.

For example, if Q is the quiver

• // • // •

then Q is the following quiver.

• // ++• // •

Now we explain the connection between generalized representations and noncommutative forms.

Definition 5.6. Let A =
⊕

n∈ZAn be a dga. The Fedosov product on A is defined by

x ◦ y = xy − (−1)|x|dxdy

for homogeneous elements x, y ∈ A.
27



It is an exercise, directly applying the Leibniz rule, to show that the Fedosov product is associative. Under

the Fedosov product, (A, ◦) is an algebra, but it is no longer a graded algebra.

Proposition 5.7. [CQ95a, Proposition 1.2] If A is an A–algebra then RSA is isomorphic to the S–algebra

Ωev
S (A) of even-dimensional forms under the Fedosov product. Furthermore, under this isomorphism, the

ideal IAn corresponds to
⊕

k>n Ω2k
S (A).

Proof. The following argument is given by Cuntz and Quillen in the case S = k; it goes through without

change in the case of a general S.

Define a based linear S–map ρ : A → Ωev
S (A) by ρ(a) = a ∈ Ω0

S(A). The curvature of ρ is ωρ(a, b) =

ab− a ◦ b = ab− (ab− (−1)0daab) = dadb.

Corresponding to ρ, we have a morphism of S–algebras Ψ : RSA → Ωev
S (A). By definition, this Ψ satisfies

Ψ(a0 ⊗ (a1a2 − a1 ⊗ a2)⊗ (a3a4 − a3 ⊗ a4) · · · ) = a0da1da2 · · ·

for all a0, a1, . . . ∈ A, and so Ψ is a surjective map of S–algebras. We now show that Ψ is an isomorphism.

Define a linear map Φ2k : Ω2k(A) → (TS(A/S))2k by

Φ2k(a0, a1, . . . , a2k) = a0 ⊗ (a1a2 − a1 ⊗ a2)⊗ · · · ⊗ (a2k−1a2k − a2k−1 ⊗ a2k).

Then Φ2k is well-defined as a map from A ⊗k A
⊗(2k)

, and it respects the defining relations of Ω2k
S (A).

Therefore, it gives a well-defined linear map Φ2k : Ω2k
S (A) → RSA. We can put all the Φ2k together to give

a linear map Φ : Ωev
S (A) → RSA. We show that Φ is surjective. Indeed, the image of Φ is a left ideal in RSA

and contains 1RSA, which is enough to show that Φ is surjective. Furthermore, ΨΦ is the identity, because

(a0, a1, . . . , an) = a0da1 · · · dan in ΩA. Therefore, Φ is also injective, so it is a bijection and is inverse to the

S–algebra map Ψ. It follows that Φ is also an S–algebra map and so Ψ is an isomorphism.

It remains to show the statement about IA, which recall is defined as the kernel of the natural map

RSA → A induced by the identity map A → A. In particular, a1a2 − a1 ⊗ a2 ∈ IA for all a1, a2 ∈ A. Thus,

Ω2
S(A) ⊂ Ψ(IA) and hence

⊕
k≥n Ω2k

S (A) ⊂ Ψ(IAn). For the reverse inclusion, note that the following

diagram commutes, where the map Ωev
A (A) → A is projection onto the 0–degree component.

RSA

Ψ

²²

!!CC
CC

CC
CC

A

ΩSA

=={{{{{{{{

Since Ψ is an isomorphism, it follows that Ψ(IA) =
⊕

k≥1 Ω2k
S (A) and therefore

⊕
k≥n Ω2k

S (A) ⊃ Ψ(IAn). ¤
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Corollary 5.8. The ideal IAn ⊂ RSA is generated by the elements

(a1a2 − a1 ⊗ a2)⊗ (a3a4 − a3 ⊗ a4)⊗ · · · ⊗ (a2n−1a2n − a2n−1 ⊗ a2n)

for a1, . . . , a2n ∈ A.

5.2. Nilpotent generalized representations. It is interesting to see what kinds of objects we get by

imposing conditions on the curvature of a generalized representation % : A → End(V ) which are weaker than

ω = 0. One obvious one is ω⊗n = 0. In this case, % : A → End(V ) is said to be nilpotent of degree n.

Corollary 5.8 implies that % is nilpotent of degree n if and only if

(%(a1a2)− %(a1)%(a2))(%(a3a4)− %(a3)%(a4)) · · · (%(a2n−1a2n)− %(a2n−1)%(a2n)) = 0

for all ai ∈ A. Nilpotent generalized representations of degree n correspond to representations of RSA/IAn.

For simplicity, we take S = k. What can be said about nilpotent generalized representations?

If V is a nilpotent generalized representation of A of degree n, then we can filter V as

V ⊃ IA · V ⊃ IA2 · V ⊃ · · · ⊃ IAn · V = 0.

The associated graded space gr(V ) =
⊕

i IAi · V/IAi+1 · V is a representation of RA/IA = A. Therefore,

we see that an algebra A has a nilpotent generalized representation of dimension n if and only if it has an

ordinary representation of dimension n. Furthermore, every nilpotent generalized representation V has a

basis with respect to which the %(a) have the form

%(a) =




ρ1(a) f12(a) · · · f1n(a)

0 ρ2(a) · · · f2n(a)

0 0
. . .

...

0 0 0 ρn(a)




where the ρi are representations A → Vi, and the fij are linear maps A → Hom(Vi, Vj) which satisfy

fij(1A) = 0. This can be refined to get a description of the category RA/IAn −Mod.

5.3. Superalgebras. Another universal problem whose solution is contained in ΩA is the following.

Definition 5.9. A superalgebra is an algebra A which is Z/2–graded. That is, as a vector space, A =

A+ ⊕A− where A+ is a subalgebra, and A+A− ⊂ A− ⊃ A−A+, while A−A− ⊂ A+.

Equivalently, a superalgebra is a pair (A, γ) where A is an algebra and γ : A → A is an automorphism

with γ2 = 1.

Given an algebra A, there exists a superalgebra QA with the following universal property: there is an

algebra map A → QA, and if U is any superalgebra with an algebra map A → U , then there exists a unique
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map QA → U of superalgebras which makes the diagram

A //

²²

QA

~~||
||

||
||

U

commute.

The superalgebra QA may be constructed as the coproduct A ∗ A in the category of k–algebras. Recall

that the category of k–algebras has coproducts. Indeed, given k–algebras A and B with presentations

A = k〈S〉/IA, B = k〈T 〉/IB , where k〈X〉 denotes the free algebra on a set X, we may define

A ∗B = k〈S t T 〉/I (6)

where I is the two-sided ideal generated by IA and IB . It is an exercise to check that this is indeed a

coproduct of A and B.

The algebra A ∗ A has a natural automorphism γ of order 2. This can be seen from the categorical

definition. Explicitly, it is given by interchanging the generators of the two copies of A in the presentation

(6).

Theorem 5.10. [CQ95a, Proposition 1.3] Let A be a k–algebra. There is an isomorphism of superalgebras

between QA and (ΩA, ◦) where ◦ denotes the Fedosov product.

The proof of Proposition 5.10 is similar to the proof of Proposition 5.7, and can be found in the first

section of [CQ95a] (where more is also proved). Cuntz and Quillen then go on to give a little-known but very

interesting description of the free product A ∗ B of any two algebras in terms of ΩA and ΩB (see [CQ95a,

Proposition 1.4]). It is remarkable that the solutions of so many universal problems should be expressible in

terms of differential forms.

5.4. Differential forms and Hochschild cohomology. Recall the reduced bar complex of an algebra A.

This is a projective resolution of A in the category of A–bimodules, and it has the form

· · · → A⊗k A
⊗2 ⊗A → A⊗A⊗A → A → 0

with the differential b′ given by

b′(a0, a1, . . . , an) =
n−1∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , an).
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We can identify A⊗ A
⊗n

with Ωn(A), and this enables us to rewrite b′ in terms of multiplication of forms.

Recall that (a0, . . . , an) = a0da1 · · · dan in Ωn(A). We have

b′(a0da1 · · · dan ⊗ an+1) =
n−1∑

i=1

(−1)ia0da1 · · · d(aiai+1) · · · dan ⊗ an+1

+ (−1)na0da1 · · · dan−1 ⊗ anan+1 + a0a1da2 · · · dan ⊗ an+1.

Now recall the rule for multiplication of forms:

(a0da1 · · · dan−1)an =
n−1∑

i=0

(−1)n−1−ia0 · · · d(aiai+1) · · · dan.

We thus obtain

b′(a0da1 · · · dan ⊗ dan+1) = (−1)n−1(a0da1 · · · dan−1)an ⊗ an+1 + (−1)n(a0da1 · · · dan−1 ⊗ anan+1

which may be written in general as

b′(ωda⊗ a′) = (−1)|ω|(ωa⊗ a′ − ω ⊗ aa′), (7)

which is Equation 24 in [CQ95a]. We will use (7) to study algebras of low cohomological dimension with

respect to Hochschild cohomology.

Exercises 5.11. Exercises on dgas.

(1) Let (A, d) be a dga. Show that the Fedosov product on A is associative.

(2) Show that if A is a finite-dimensional algebra, then RA/IAn is also finite-dimensional for any n ≥ 1.

(3) Show that (6) is a well-defined coproduct in the category of algebras.

(4) If A is an object in a category C and the coproduct object A t A exists, show that A t A has an

automorphism of order 2.

6. Separable algebras

In this section, we describe algebras of cohomological dimension 0 with respect to Hochschild cohomology.

Definition 6.1. An algebra A has cohomological dimension n if

Hn+1(A,M) = 0

for all A–bimodules M , but there exists an A–bimodule M with Hn(A,M) 6= 0.

From the definition of Hn, we see that A has cohomological dimension 0 if and only if A is a projective

object of the category A−Bimod. We will now interpret this condition in terms of differential forms. Recall

from Proposition 4.14 that there is a short exact sequence of A–bimodules

0 → Ω1(A) → A⊗k A → A → 0. (8)
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If A is a projective object of A− Bimod, this sequence splits. But also, if the sequence (8) splits, then A is

a summand of A ⊗k A, which is a free A ⊗k Aop–module. Therefore, A is a projective A–bimodule if and

only if (8) splits. This is the case if and only if there exists a bimodule map s : A → A⊗k A with ms = idA.

Such a bimodule map s is determined by the element s(1) ∈ A ⊗ A, and this must satisfy ms(1) = 1 and

as(1) = s(1)a for all a ∈ A. Conversely, if Z ∈ A⊗A satisfies m(Z) = 1 and aZ = Za for all a ∈ A then we

may define a splitting s : A → A⊗A of (8) by s(a) = aZ for a ∈ A.

Definition 6.2. Given an algebra A, a separability element is an element Z of the A–bimodule A⊗k A such

that aZ = Za for all a ∈ A, and m(Z) = 1.

The above discussion shows that (8) splits if and only if A has a separability element.

Now note that a splitting of (8) is equivalent to giving a bimodule map p : A⊗k A → Ω1(A) which satisfies

pj = idΩ1(A) where j : Ω1(A) → A ⊗k A is the map in (8), which is defined by j(a ⊗ b) = a ⊗ b − ab ⊗ 1.

Such a bimodule map p is determined by Y = p(1⊗ 1) since p(a⊗ b) = ap(1⊗ 1)b for all a, b ∈ A. If a ∈ A

then da = pj(da) = pj(1⊗ a) = p(1⊗ a− a⊗ 1) = Y a− aY , so p gives rise to an element Y ∈ Ω1(A) with

da = [Y, a] for all a ∈ A. On the other hand, given such a Y , we may define p(a⊗ b) = aY b and this gives a

splitting of (8). Thus, we have proved the following theroem.

Theorem 6.3. For an algebra A, the following are equivalent.

(1) A has Hochschild cohomological dimension 0.

(2) The sequence (8) splits.

(3) A has a separability element.

(4) The universal derivation d : A → Ω1(A) is inner.

Definition 6.4. An algebra A which has a separability element is called separable.

We will now show that if k = C, then being separable is equivalent to being semisimple.

Definition 6.5. An algebra A over an algebraically closed field k is called semisimple if A is finite-

dimensional and every left A–module is projective.

The Artin-Wedderburn Theorem states that an algebra A is semisimple if and only if there exist n1, n2, . . . , nr

with

A ∼= Mn1(k)×Mn2(k)× · · · ×Mnr (k).

Proposition 6.6. [CQ95a, Section 4] If A is a separable algebra over an algebraically closed field k, then A

is semisimple.

Proof. Let Z =
∑n

i=1 xi ⊗ yi ∈ A ⊗ A be a separability element. We may choose Z with n as small as

possible. Let V = span{xi}. We show that V is a left ideal of A and that A acts faithfully on V . Given
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a ∈ A, we have

n∑

i=1

axi ⊗ yi =
n∑

i=1

xi ⊗ yia.

The {yi} must be linearly independent. If they were not, then by gathering terms we could write Z as the

sum of ≤ n− 1 simple tensors, which contradicts the choice of n. Therefore, there exist δi ∈ A∗, the linear

dual of A, with δi(yj) = δij . Therefore, applying 1⊗ δj , we have axj =
∑n

r=1 xrδj(yra) for all j. Therefore,

axj ∈ V . So V is a representation of A.

Now we show that V is faithful. If axi = 0 for all i, then
∑

i axi ⊗ yi = 0. Applying m, we have

a = a
∑

i xiyi = 0. Therefore, A ⊂ End(V ) is finite-dimensional.

Now let M be a left A–module. Since the sequence(8) splits, we have A⊗kA ∼= A⊕Ω1(A) as A–bimodules.

Tensoring on the right with M gives A ⊗k M ∼= M ⊕ (Ω1(A) ⊗A M) as left A–modules. But A ⊗k M is a

free module, and therefore M is projective, as required. ¤

Conversely, a semisimple algebra A is always separable. To see this, note that A = Mn1(k)×· · ·×Mnr (k)

is Morita equivalent to the commutative algebra S = k× k · · · × k. But every bimodule over S is projective,

because S ⊗k Sop = S ⊗k S =
⊕

i,j Uij , where the Uij = kei ⊗ ej are one-dimensional S–bimodules. Any

S–bimodule may be written as a sum of the Uij , and hence is projective. By Morita equivalence, every

A–bimodule is also projective, and so A is separable.

Thus, over C the notions of separable and semisimple are the same.

7. Quasi-free algebras

Now we look at cohomological dimension 1.

In order to understand the condition H2(A,M) = 0 for all M , we begin with a description of H2(A,M)

in terms of extensions. We define Ext2(A, M) to be the set of all extensions

0 // M
i // B

π // A // 0

where:

• B is a k–algebra.

• π : B → A is a surjective algebra map.

• i(M) ⊂ B is a square-zero ideal.

modulo the equivalence relation that two such extensions 0 → M → B → A → 0 and 0 → M → B′ → A → 0

are equivalent if and only if there is an isomorphism of algebras φ : B → B′ such that the following diagram
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commutes.

B

ÃÃA
AA

AA
AA

A

φ

²²

0 // M

>>||||||||

ÃÃB
BB

BB
BB

B A // 0

B′

>>}}}}}}}

Note that if π : B ³ A is a surjective algebra map with ker(π)2 = 0, then ker(π) is automatically an A–

bimodule. Indeed, a left and right action of A on ker(π) may be defined by taking any vector space splitting

s : A → B of π and setting

a ·m · b = s(a)ms(b)

for a, b ∈ A and m ∈ ker(π). It is an exercise to check that this is a well-defined bimodule structure on

ker(π). In the definition of the set Ext2(A, M), we should therefore make the further requirement that

• The natural A–bimodule structure on ker(π) coincides via i with the bimodule structure on M .

Theorem 7.1. Let A be a k–algebra and M an A–bimodule. There is a bijection

H2(A,M) ↔ Ext2(A,M).

Proof. See [Lod92, Theorem 1.5.4] for the details. ¤

We are interested in the situation when H2(A,M) = 0, so that Ext2(A,M) has only one element. But there

is always a trivial extension, given by A⊕M with the product (a1,m1)(a2,m2) = (a1a2,m1a2 +a1m2). This

is also denoted A nM . To state that H2(A,M) = 0 is therefore to state that every square-zero extension

with kernel M is equivalent to the trivial one. We call such an extension trivial.

Lemma 7.2. An extension

0 // M
i // B

π // A // 0

of A by M is trivial if and only if there exists an algebra homomorphism ` : A → B such that π` = idA.

Proof. If

0 → M → B → A → 0

is trivial then there is a φ : B → A⊕M making the following diagram commute.

B

##GGGGGGGGG

φ

²²

0 // M

;;wwwwwwwww

##GG
GG

GG
GG

G A // 0

M ⊕A

;;xxxxxxxxx
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If we let iA : A → M ⊕A be the insertion, then ` := φ−1iA splits the map B → A, and it is an algebra map

because iA is.

Conversely, suppose such an algebra map ` : A → B exists. We may then define φ : M ⊕ A → B by

φ(m, a) = j(m) + `(a) where j : M → B is the given inclusion map. It is an exercise to check that φ is an

algebra isomorphism. ¤

Definition 7.3. If π : B ³ A is a square-zero extension (ie. an algebra homomorphism with ker(π)2 = 0),

then an algebra homomorphism ` : A → B with π` = idA is called a lifting homomorphism.

We see that H2(A,M) = 0 for all M if and only if every square-zero extension of A has a lifting homo-

morphism. Now we give another characterization.

Proposition 7.4. [CQ95a, Proposition 3.3] Let A be an algebra. Then H2(A,M) = 0 for every A–bimodule

M if and only if Ω1(A) is a projective object in A− Bimod.

Proof. Once again, we use the short exact sequence (8)

0 → Ω1(A) → A⊗A → A → 0.

For each i, this yields a long exact sequence of Ext groups in A− Bimod.

· · · → Exti(A ⊗ A,M) → Exti(Ω1(A),M) → Exti+1(A,M) → Exti+1(A ⊗ A,M) → · · ·

Since A⊗A is a free A–bimodule, we get

Exti(Ω1(A),M) ∼= Exti+1(A,M)

for each i. But Hi(A,M) = Exti(A,M) by definition. Taking i = 1, this proves the proposition. ¤

Definition 7.5. An algebra A is called formally smooth or quasi-free if H2(A, M) = 0 for all A–bimodules

M .

We have already seen that formal smoothness is equivalent to every square-zero extension having a lifting

homomorphism. More generally, we have the following.

Definition 7.6. An algebra A is formally smooth if and only if for every square-zero extension B → C of

an algebra C, and every morphism f : A → C, there exists a lifting f̂ : A → B making the following diagram

commute.

C

²²
A //

??~~~~~~~
B
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Proof. The proof was shown to me by Yuri Berest. Given a square zero extension π : B → C and a map

f : A → C, we form the pullback Z = {(a, b) ∈ A×B : π(b) = f(a)}.

Z

p

²²

q
// C

π

²²
A

f
// B

The kernel of p is {(0, b) : π(b) = 0}, which is a square-zero ideal in Z because ker(π) is a square-zero ideal

in B. Therefore, p has a lifting homomorphism `. Then f̂ = q` is the desired lifting of f . ¤

Proposition 7.7. An algebra A is quasi-free if and only if for every surjective algebra homomorphism

π : B → C with ker(π) a nilpotent ideal, and every f : A → C, there exists a lifting f̂ : A → B.

Proof. Let I = ker(π). The proof precedes by induction on the nilpotency degree of I. We have a map

f : A → C/I, and there is a square-zero extension

0 → I/I2 → B/I2 → B/I → 0,

so we get a lifting of f to a map A → B/I2. Now consider the square-zero extension

0 → I2/I3 → B/I3 → B/I2 → 0

and continue in the same manner. ¤

Proposition 7.7 shows that the Cuntz-Quillen definition of formal smoothness coincides with Grothendieck’s

definition of formal smoothness in the category of commutative rings (see [Gro67, 17.1.1]). It is natural to

ask whether a smooth commutative algebra is actually formally smooth in the noncommutative sense. But

in fact, this is not the case.

Example 7.8. Let A = k[x, y]. Then A is a smooth commutative algebra, but the HKR Theorem states

that H2(A,A) =
∧2

A Der(A), which is a free A–module of rank 1. So A is not quasi-free.

However, k[x] is formally smooth. Indeed, any free algebra is formally smooth because it automatically

satisfies any of the stated lifting properties (this is the reason for the terminology quasi-free). We shall see

later that formally smooth algebras are rather scarce.

The fact that k[x, y] is not formally smooth means that there is some square-zero extension of k[x, y] for

which no lifting homomorphism exists. If we want to construct an explicit example of such an extension, a

first guess would be to take

k〈X, Y 〉/〈XY − Y X〉2 → k[x, y].

To show that there is no lifting homomorphism for this extension, we can use the following proposition.

Proposition 7.9. Let A be a k–algebra. The following are equivalent.
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(1) A is formally smooth.

(2) For all presentations A = F/I with F free, there exists a lifting homomorphism F/I → F/I2.

(3) There exists a presentation A = F/I with F free, such that there is a lifting homomorphism F/I →
F/I2.

Proof. We just need to check that the existence of a presentation A = F/I with a lifting homomorphism

ζ : F/I → F/I2 implies that A is quasi-free. For this, let π : B ³ A be any square-zero extension. We need

to find a lifting homomorphism ` : A → B.

Suppose F is the free algebra on {Xi : i ∈ I} and write xi for Xi + I ∈ A. For each i ∈ I, choose bi ∈ B

with π(bi) = xi. Define λ : F → B by λ(Xi) = bi. Then πλ is the quotient map F → F/I, and hence

ker(πλ) = I. Therefore, λ(I) ⊂ ker(π) and so λ(I2) ⊂ λ(I)2 = 0. Therefore λ induces a map λ : F/I2 → B.

Taking ` = λζ, we get π` = πλζ = idA, as required. ¤

7.1. The universal extension. Recall from Proposition 4.13 that for an algebra A, RA = RkA is the free

algebra on the vector space A. Thus, Proposition 7.9 implies in particular that A is quasi-free if and only if

the square-zero extension

RA/IA2 → A

has a lifting homomorphism. By analysing such lifting homomorphisms more closely, Cuntz and Quillen

related quasi-freeness to existence of a right connection ∇ : Ω1(A) → Ω2(A). We now explain this.

Proposition 5.7 implies that RA/IA2 is the vector space A⊕ Ω2(A) equipped with the Fedosov product.

Any lifting homomorphism A → RA/IA2 is given by a 7→ a−φ(a) for some linear map φ : A → Ω2(A). The

condition that a 7→ a− φ(a) is an algebra map implies

(a1 − φ(a1)) ◦ (a2 − φ(a2)) = a1 ◦ a2 − φ(a1) ◦ a2 − a1 ◦ φ(a2) + φ(a1) ◦ φ(a2)

for all a1, a2 ∈ A, where ◦ is the Fedosov product. This reduces to the equation

φ(a1a2) = a1φ(a2) + φ(a1)a2 + da1da2 (9)

for all a1, a2 ∈ A.

We relate (9) to a splitting of a short exact sequence. Recall that there is a short exact sequence

0 → Ω1(A) → A⊗A → A → 0

of A–bimodules. As a sequence of left A–modules, this sequence splits because A is a free left A–module.

We can then tensor on the left with Ω1(A) to obtain another split short exact sequence of the form

0 // Ω1(A)⊗A Ω1(A) // Ω1(A)⊗k A // Ω1(A) // 0
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But it follows from the proof of Proposition 5.3 that Ω1(A)⊗A Ω1(A) ∼= Ω2(A), and so we have a short exact

sequence of A–bimodules

0 // Ω2(A)
j

// Ω1(A)⊗k A
m // Ω1(A) // 0 (10)

where j(a0da1da2) = a0da1da2 ⊗ 1− a0da1 ⊗ da2 and m(a0da1 ⊗ b) = a0da1 · b.

Lemma 7.10. [CQ95a, Proposition 3.4] There exists a linear map φ : A → Ω2(A) satisfying (9) if and only

if the short exact sequence (10) splits.

Proof. A splitting of (10) is equivalent to a map of A–bimodules p : Ω1(A)⊗A → Ω2(A) with pj = id. Since

Ω1(A)⊗k A = A⊗k A⊗k A, such a p is of the form p(axb) = aφ(x)b for some φ : A → Ω2(A). By evaluating

p at da1da2 for a1, a2 ∈ A, we get

p(da1da2) = p(da1 · a2 ⊗ 1− da1 ⊗ a2

= p(d(a1a2)⊗ 1− a1da2 ⊗ 1− da1 ⊗ da2)

= φ(a1a2)− a1φ(a2)− φ(a1)a2.

From this, we see that pj = id is equivalent to φ satisfying (9). ¤

We can use this to get another characterization of quasi-freeness.

Proposition 7.11. [CQ95a, Proposition 3.4] A k–algebra A is quasi-free if and only if there exists a linear

map

∇r : Ω1(A) → Ω2(A)

satisfying

∇r(aω) = a∇r(ω)

∇r(ωa) = (∇rω)a + ωda

for all ω ∈ Ω1(A) and all a ∈ A.

Proof. From Lemma 7.10, we see that A is quasi-free if and only if there exists φ : A → Ω2(A) satisfying

(9). Giving a linear map φ : A → Ω2(A) is the same as giving a left A–map ∇r : A⊗k A = Ω1(A) → Ω2(A),

defined by ∇r(a⊗ b) = aφ(b). We then compute

∇r(a0da1a)−∇r(a0da1)a− a0da1da = ∇r(a0(da1a))−∇r(a0a1da)−∇r(a0da1)a− a0da1da

which equals

a0φ(a1a)− a0a1φ(a)− a0φ(a1)a− a0da1da

for all a0, a1, a ∈ A. Therefore, (9) is equivalent to

∇r(a0da1a) = ∇r(a0da1)a + a0da1a
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for all a0, a1, a ∈ A. ¤

Remark 7.12. A map of the form ∇r is called a right connection on the bimodule Ω1(A). Thus, we can

say that A is quasi-free if and only if Ω1(A) has a right connection.

7.2. Examples of quasi-free algebras. So far, the only examples we have seen of quasi-free algebras are

free algebras and semisimple algebras. We now give some further examples.

The first thing we want to prove is that Hochschild dimension ≤ 1 implies global dimension ≤ 1. Recall

that an algebra is called (left) hereditary if every submodule of a projective (left) module is projective.

Equivalently, every module has a projective resolution of length 1, that is, if M is a left A–module then there

is a short exact sequence

0 → P1 → P0 → M → 0

with P0, P1 projective.

Theorem 7.13. If A is a quasi-free algebra then A is left and right hereditary.

Proof. We begin by considering the short exact sequence (8) of A–bimodules.

0 → Ω1(A) → A⊗k A → A → 0

This splits as a sequence of right A–modules, because A is a projective right A–module. Therefore, A⊗k A ∼=
Ω1(A)⊕A as right A–modules. Now let M be a left A–module. Then we have A⊗k M ∼= (Ω1(A)⊗A M)⊕M ,

and hence the sequence obtained by tensoring (8) with M on the right remains exact. Thus, we have a short

exact sequence of left A–modules

0 → Ω1(A)⊗A M → A⊗k M → M → 0.

The middle term is a projective left A–module because it is a direct sum of copies of A. We show that the

left hand term is projective. Because A is quasi-free, Ω1(A) is a projective A–bimodule. Therefore, there

exists an A–bimodule Q with

Ω1(A)⊕Q ∼= (A⊗k Aop)⊗k B

for some vector space B (B is just a convenient way of recording how many copies of A⊗Aop appear in the

free module). Applying −⊗A M we obtain

(Ω1(A)⊗A M)⊕ (Q⊗A M) ∼= A⊗k B ⊗k M

and so Ω1(A) ⊗A M is a summand of a free left A–module, so it is projective. Thus, M has a projective

resolution of length ≤ 1. The same argument works when M is a right A–module, showing that A is left

and right hereditary. ¤
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Theorem 7.13 imposes a strong restriction on a quasi-free algebra A. For example, if A is a finite-

dimensional k–algebra with k algebraically closed, then A is hereditary if and only if A is Morita equivalent

to a path algebra kQ for some quiver Q. If A is a finitely-generated commutative k–algebra, then A

hereditary implies that A has finite global dimension, so A must be smooth, and furthermore A must have

Krull dimension 1. Thus, A is the coordinate ring of a smooth affine curve.

Having seen that the class of quasi-free algebras is quite restricted, let us now list some ways to construct

new quasi-free algebras from old ones.

Proposition 7.14. [CQ95a, 5.3] If A is a quasi-free algebra, then the following algebras are also quasi-free.

(1) The free product A ∗B, for any quasi-free algebra B.

(2) Any formal localization AS for S ⊂ A.

(3) TA(N) where N is any projective object in A− Bimod.

(4) Any algebra C which is Morita equivalent to A.

Proof. (1) If A and B are quasi-free k–algebras, suppose π : C → A ∗ B is a surjective algebra map

with ker(π)2 = 0. We wish to find a lifting homomorphism ` : A ∗ B → C. There are natural maps

A → A ∗ B and B → A ∗ B into the coproduct. We get lifting homomorphisms `A : A → C and

`B : B → C. These combine to give the desired lifitng homomorphism (`A, `B) : A ∗B → C.

(2) For a subset S ⊂ A, the algebra AS is defined via the following universal property: there is a map

α : A → AS such that α(s) is a unit for all s ∈ S, and if θ : A → B is any algebra map such that

θ(s) is a unit for all s ∈ S, then there exists a unique θ′ : AS → B such that θ′α = θ, in other words,

the following diagram commutes.

A

ÃÃA
AA

AA
AA

A
α // AS

²²
B

The existence of AS may be proved by taking AS = A ∗ k〈ts : s ∈ S〉/I, where I is the two sided

ideal generated by tss− 1 and sts − 1 for s ∈ S.

Now suppose A is quasi-free. We wish to show that AS is quasi-free. Suppose π : B → AS is a

surjective algebra map with ker(π)2 = 0. Then the natural map α : A → AS has a lifting θ : A → B

with πθ = α. If we can show that θ(s) is a unit for all s ∈ S, then the universal property of AS

will give the desired lifting AS → B. Let s ∈ S. Since πθ(s) is a unit, there exists u ∈ B with

1− uθ(s), 1− θ(s)u ∈ ker(π). Therefore, (1− uθ(s))2 = (1− θ(s)u)2 = 0. But for any u, v, we have

(1−uv)2 = 1− 2uv + uvuv = 1− (2u−uvu)v and so θ(s) has a left inverse in B. Similarly, θ(s) has

a right inverse, so the left and right inverses must coincide, and θ(s) is a unit.

(3) Suppose A is a quasi-free algebra and N is a projective A–bimodule. Suppose π : B → TA(N) is a

surjective algebra map with ker(π)2 = 0. There is a natural map A → TA(N) and this induces a
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map θ : A → B because A is quasi-free. The map θ makes B into an A–bimodule. Thus, because

N is projective and we have a surjection π : B → TA(N) of A–bimodules, we get a map of A–

bimodules ψ : N → B , by definition of projectivity. We have the following commutative diagram of

A–bimodule maps.

N
ψ

||yyyyyyyyy

²²
B

π // TA(N)

A

θ

bbEEEEEEEEE

OO

The universal property of TA(N) then gives a map TA(N) → B which is a lifting homomorphism for

π (recall that this map is given explicitly by n1 ⊗ · · · ⊗ nr 7→ ψ(n1) · · ·ψ(nr) in degree ≥ 1).

(4) If A and B are Morita equivalent, then Theorem 3.9 implies that H2(A,M) = 0 for all M if and

only if H2(B, M) = 0 for all M . Thus, A is quasi-free if and only if B is quasi-free.

¤

Examples 7.15. Some examples:

(1) If A is a quasi-free algebra, then by Proposition 7.14, so is Mn(A), because it is Morita equivalent

to A.

(2) If Q is a quiver then kQ = TS(A) by definiton, where A is the span of the arrows of Q. The

S–bimodule A is projective because S is semisimple, and so kQ is quasi-free.

(3) If A is a quasi-free algebra and a finite group G acts on A by algebra automorphisms, then TkG(A)

is quasi-free.

Exercises 7.16. Exercises on quasi-freeness.

(1) Let R be a ring. Show that every left R–module has a projective resolution of length ≤ 1 if and only

if every submodule of a projective module is projective. (Hint: use the long exact sequence for Ext).

(2) Show that if A is quasi-free, then so is the algebra ΩA.

(3) If A and B are quasi-free algebras, show that the product A×B is quasi-free.

(4) Show that the tensor product A⊗k B of quasi-free algebras need not be quasi-free.

7.3. Quasi-free algebras and completions. Let R be a k–algebra and I ⊂ R a two-sided ideal. Then we

may define the i–adic completion of R with respect to I as follows.

R̂ = lim←−
n≥1

R/In

Explicitly, this is the set of sequences

{(s1, s2, . . .) : si ∈ R/Ii and si+1 + Ii = si for all i}.
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Recall that this algebra may also be defined via the universal property that for all i, there exists an algebra

homomorphism πi : R̂ → R/Ii, such that the following diagram commutes.

R̂

||yy
yy

yy
yy

y

ÃÃB
BB

BB
BB

B

R/Ii+1 // R/Ii

for all i, and such that if Z is a k–algebra and there are maps θi : Z → R/Ii for all i making the following

diagram commute

Z

||yy
yy

yy
yy

y

!!CC
CC

CC
CC

R/Ii+1 // R/Ii

then there exists a unique map θ : Z → R̂ with πiθ = θi for all i.

We can characterize quasi-freeness in terms of completions in the following way.

Proposition 7.17. Let A be a k–algebra. Then A is quasi-free if and only if for all k–algebras R and ideals

I ⊂ R, if α : A → R/I is an algebra map, then there exists an extension α̂ : A → R̂ such that the diagram

R̂

π1

²²
A

α //

α̂

>>}}}}}}}}
R/I

commutes.

Proof. Suppose the given lifting property holds. Let π : B → A be a square-zero extension and let I = ker(π).

Denote by B̂ the completion of B with respect to the ideal I. Then B̂ ∼= B and therefore there exists a

lifting homomorphism A → B, so A is quasi-free.

Conversely, suppose A is quasi-free. Let α : A → R/I. By quasi-freeness, this can be lifted to α2 : A →
R/I2. Inductively, as in the proof of Proposition 7.7, we obtain αi : A → R/Ii for every i ≥ 1, and therefore

a lifting homomorphism α̂ : A → R̂. ¤

One of the things proved by Cuntz and Quillen in [CQ95a, Section 7] is that given an algebra homomor-

phism α : A → R/I, there is a canonical way to get a lifting A → R̂. We will explain this construction and

also explain in what sense it is universal.

Suppose A is a quasi-free k–algebra. Write RA for RkA. There exists a lifting homomorphism A →
RA/IA2. We will use this to construct a map ` : A → R̂A, where R̂A denotes the completion of RA with

respect to the ideal IA. Recall from Section 7.1 that the lifting A → RA/IA2 has the form a 7→ a − φa

where φ : A → Ω2(A) satisfies

a1φ(a2) + φ(a1)a2 = φ(a1a2)− da1da2
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for all a1, a2 ∈ A. By Lemma 4.13, RA is the free algebra Tk(A). Thus, we may define a derivation

D : RA → RA by setting

Da = φ(a)

for a ∈ A. This makes sense because φ(a) ∈ Ω2(A), and we have an identification RA ∼= (Ωev(A), ◦) where

◦ denotes the Fedosov product of forms. From Proposition 5.7, we also know that under this identification,

IAk is identified with the even forms of degree ≥ 2k. Since D(1) = 0 because D is a derivation, we have

D(RA) ⊂ Ω2(A) ⊂ IA and therefore D(IAk) ⊂ IAk for every k ≥ 1.

Following [CQ95a], we now make the following calculation. For a1, a2 ∈ A, we have

D(da1da2) = D(a1a2 − a1 ◦ a2)

= φ(a1a2)− a1 ◦D(a2)−D(a1) ◦ a2

= φ(a1a2)− a1φ(a2)− φ(a1)a2 + da1dφ(a2) + dφ(a1)da2

= da1da2 + da1dφ(a2) + dφ(a1)da2

Now consider the action of D on a 2n–form a0da1da2 · · · da2n−1da2n. Using the fact that D is a derivation

and the above calculation of D(da1da2), we see that

D(a0da1da2 · · · da2n−1da2n) = (H + L)(a0da1da2 · · · da2n−1da2n)

where H : RA → RA is the linear map defined by H(ω) = iω for ω ∈ Ω2i(A), and where L : RA → RA is

the linear map defined by

L(a0da1da2 · · · da2n−1da2n) = φ(a0)da1da2 · · · da2n−1da2n +
2n∑

j=1

a0da1 · · · daj−1dφ(aj)daj+1 · · · da2n.

Thus, by linearity, we have

D = H + L.

Also, since L raises degree by 2, we obtain that

(D − k) · · · (D − 1)D(RA) ⊂ IAk+1.

Now, for a fixed k, D induces a derivation D : RA/IAk+1 → RA/IAk+1, and this derivation satisfies

(D − k) · · · (D − 1)D = 0. We now use the following exercise.

Exercise 7.18. Let V be a (possibly infinite-dimensional) vector space and A : V → V a linear trans-

formation. Suppose that (A − λ1) · · · (A − λn) = 0 for some scalars λi, which are all distinct. Then

V =
⊕n

i=1 ker(A− λi).

From Exercise 7.18, we conclude that

RA/IAk+1 =
k⊕

i=0

ker(D − i),
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the direct sum of the eigenspaces of D. From Proposition 5.7, we also know that

RA/IAk+1 =
k⊕

i=0

Ω2i(A).

For an eigenvector v of D, we have v =
∑k

i=0 ωi with ωi ∈ Ω2i(A). Define the leading term of v to be

σ(v) = ωi, with the smallest i such that ωi 6= 0. Since D = H + L, we see that if v is an eigenvector

with eigenvalue i, then σ(v) ∈ Ω2i(A). We claim that the map σ : ker(D − i) → Ω2i(A) is a vector space

isomorphism.

To see that σ is one-to-one, suppose that v and w are i–eigenvectors with the same leading term. Then

D(v −w) = i(v −w) ∈ Ω2i(A)∩⊕
j>i Ω2j(A) = 0. So i(v −w) = 0 and hence v = w. Therefore, the map is

one-to-one. To see that it is onto, let ω ∈ Ω2i(A). We exhibit an eigenvector v with σ(v) = ω by v = e−L(ω).

Since we are working in RA/IAk+1, L is nilpotent and so e−L makes sense. We may compute:

Dv = (H + L)e−L(ω)

= H

∞∑

k=0

(−1)k

k!
Lkω +

∞∑

k=0

(−1)k

k!
Lk+1ω

=
∞∑

k=0

(−1)k

k!
(k + i)Lkω +

∞∑

k=0

(−1)k

k!
Lk+1ω

= i

∞∑

k=0

(−1)k

k!
Lkω

= iv

Thus, e−L : Ω2i(A) → ker(D − i) is a linear isomorphism which is inverse to σ, since clearly σ(e−Lω) = ω.

Now, e−L is also an algebra isomorphism, because if ω ∈ Ω2i(A) and η ∈ Ω2j(A) are homogeneous elements,

then e−L(ωη) and e−L(ω)e−L(η) are eigenvectors of D with eigenvalue i+ j and leading term ωη. Therefore,

they must be equal. Hence, e−L is a bijective algebra map and therefore is an algebra isomorphism.

Corollary 7.19. If A is quasifree then for any k ≥ 0, there is an isomorphism of algebras

e−L :
k⊕

i=0

Ω2i(A) → RA/IAk+1.

Combining Corollary 7.19 with Proposition 5.7 shows that the vector space
⊕k

i=0 Ω2i(A) equipped with

the Fedosov product is isomorphic to the same vector space equipped with the usual product of forms.

Combining the isomorphims e−L for different values of k yields the following corollary.

Corollary 7.20. [CQ95a, Section 7] If A is quasifree then there is an isomorphism of algebras

e−L : Ω̂ev(A) → R̂A

where the left hand side is the completion of Ωev(A) with respect to the ideal of forms of positive degree, and

the right hand side is the completion of RA with respect to the ideal IA.
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7.4. Universal lifting homomorphism. We are now in a position to answer the question from the begin-

ning of this section. Let A be a quasifree algebra and let R be an arbitrary algebra with I ⊂ R a two-sided

ideal. Suppose we are given a map α : A → R/I. We show how to extend α to α̂ : A → R̂ in such a way

that the following diagram commutes.

R̂

π1

²²
A

α̂

>>}}}}}}}} α // R/I

Since A is quasifree, there exists φ : A → Ω2(A) such that a 7→ a − φ(a) is a lifting homomorphism A →
RA/IA2. Using the definitions from the previous section, we obtain a lifting homomorphism e−L : A → R̂A.

For any k ≥ 1, this induces a homomorphism A → RA/IAk+1, which we also denote by e−L.

Given our map α : A → R/I, let n ≥ 2. We first find a map αn : A → R/In making the following diagram

commute.

R/In

π

²²
A

αn

=={{{{{{{{ α // R/I

We will then put the αn together to construct the map α̂.

Note that ker(π) = I/In, so ker(π)n = 0. Let sn : R/I → R/In be a linear map with πsn = id

and with sn(1) = 1. We may choose the sn for each n ≥ 2 in a compatible way, that is, sn−1 is the

composition of the canonical projection R/In → R/In−1 with sn : R/I → R/In. For x, y ∈ A, we have

snα(xy) − snα(x)snα(y) ∈ ker(π), and so snα : A → R/In is a based linear map whose nth curvature

vanishes. Therefore, there exists a unique algebra map ψn : RA/IAn → R/In defined by ψn(a) = snα(a)

for a ∈ A. But we also have the ring homomorphism e−L : A → RA/IAn, and we now claim that ψne−L

lifts α. That is, we claim that the following square commutes.

RA/IAn
ψn // R/In

π

²²
A

e−L

OO

α // R/I

To see this, let a ∈ A. Then e−L(a) = a + z for some z ∈ ⊕n
j=1 Ω2j(A) = IA/IAn ⊂ RA/IAn. Therefore,

πψne−L(a) = πψn(a + z) = πsnα(a) + πψn(z) = α(a) + πψn(z). We need to show that πψn(IA) = 0. But

IA ⊂ RA is generated by elements of the form x⊗ y − xy for x, y ∈ A. Since πψn is a ring homomorphism,
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we have

πψn(x⊗ y − xy) = πψn(x)πψn(y)− πψn(xy)

= πsnα(x)πsnα(y)− πsnα(xy)

= α(x)α(y)− α(xy)

= 0

for all x, y ∈ A. We obtain πψne−L = α as required. We may therefore take the lift αn := ψne−L.

To solve the original problem, we may put the maps ψn together to get a ring homomorphism ψ : R̂A → R̂,

and we see that the following square commutes.

R̂A
ψ

// R̂

π1

²²
A

e−L

OO

α // R/I

We take α̂ = ψe−L. Thus, using nothing but the original φ, we have constructed a lift of an arbitrary

morphism A → R/I to a morphism A → R̂.

7.5. A universal property. The following exercise explains one sense in which the above construction is

universal.

Exercise 7.21. Let A = R/I be any nilpotent extension of a quasifree algebra A (ie. I is a nilpotent ideal

of R). Let ρ : A → R be a based linear map such that the composition of R → R/I with ρ is the identity.

Show that there exists a unique algebra map ρ∗ : R̂A → R such that ρ∗e−L is a lifting homomorphism for

the projection R → R/I = A. Here, R̂A denotes the completion of RA with respect to the ideal IA, as

above.

8. Connections

We end these lecture notes with some remarks on connections, which were introduced in Section 7.1 above.

The notion of a connection on a one-sided module is due to Connes, and this was generalised to connections

on bimodules by Cuntz and Quillen.

8.1. Connes connections. Let A be an algebra and let E be a right A–module.

Definition 8.1. A (Connes) connection on E is a linear map

∇ : E → E ⊗A Ω1(A)

such that

∇(ξa) = ∇(ξ)a + ξ ⊗ da

for all a ∈ A and all ξ ∈ E.
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Any such ∇ may be extended uniquely to ∇ : E ⊗A ΩA → E ⊗A ΩA in such a way that ∇(ηω) =

(∇η)ω + (−1)|η|ηdω for homogeneous forms η ∈ E ⊗ ΩA, ω ∈ ΩA of degrees |η|, |ω| respectively.

There is a natural multiplication map m : E ⊗k A → E. We claim that sections of the right A–module

map m correspond bijectively to connections on E. We now verify this claim.

Recall that we have a short exact sequence of A–bimodules

0 // Ω1(A)
j

// A⊗k A // A // 0.

Because A is a projective left A–module, the sequence splits as a sequence of left A–modules. Therefore, on

tensoring it on the left by any right A–module EA, we obtain a short exact sequence of right A–modules of

the form

0 // E ⊗A Ω1(A)
1⊗j

// E ⊗k A
m // E // 0

in which the second map is m. Let us temporarily denote by π the natural quotient map E ⊗k Ω1(A) →
E ⊗A Ω1(A).

Given a section s of m, we define ∇s : E → E ⊗A Ω1(A) by ∇s = π(1⊗ d)s. We now check that ∇s is a

connection on E. Given ξ ∈ E and a ∈ A, we write s(ξ) =
∑

ξ1 ⊗ ξ2 with ξ1 ∈ E and ξ2 ∈ A. We may then

make the following calculation.

∇(ξa) = π(1⊗ d)s(ξ)a

=
∑

π(ξ1 ⊗ d(ξ2a))

=
∑

π(ξ1 ⊗ (ξ2da + d(ξ2)a))

=
∑

ξ1ξ2 ⊗ da +
∑

(ξ1 ⊗ dξ2)a

= ms(ξ)⊗ da + (∇sξ)a

= ξ ⊗ da + (∇sξ)a

This shows that ∇s is a connection on E.

Conversely, given a connection ∇ : E → E ⊗A Ω1(A), we define

s∇(ξ) = ξ ⊗ 1A − (1⊗ j)(∇(ξ))

for ξ ∈ E. We now verify that s∇ is a section of m. Because m(1 ⊗ j) = 0, all that needs to be checked is

that s∇ is a right A–map. We have

s∇(ξa) = ξa⊗ 1A − (1⊗ j)(∇(ξ)a + ξ ⊗ da)

= ξ ⊗ a− (1⊗ j)(∇(ξ))a− ξ ⊗ a + ξa⊗ 1

for all ξ ∈ E and all a ∈ A, where we used the definition of j from Proposition 4.14. The last two terms

cancel, which shows that s is an A–module map, as desired.
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We now check that ∇ 7→ s∇ and s 7→ ∇s are mutually inverse. Given a connection ∇ on E, let us write

∇ξ =
∑

γ1 ⊗ dγ2 for ξ ∈ E. We then calculate as follows.

∇s∇(ξ) = π(1⊗ d)s∇(ξ)

= π(1⊗ d)(ξ ⊗ 1A − j(∇ξ))

= π(1⊗ d)(−
∑

j(γ1 ⊗ dγ2))

=
∑

π(1⊗ d)(−γ1γ2 ⊗ 1 + γ1 ⊗ γ2)

=
∑

γ1 ⊗ dγ2

= ∇(ξ).

Finally, given a splitting s of m, we write s(ξ) =
∑

ξ1 ⊗ ξ2 as before, and calculate as follows.

s∇s(ξ) = ξ ⊗ 1A − j(∇s(ξ))

= ξ ⊗ 1A − jπ(1⊗ d)
∑

ξ1 ⊗ ξ2

= ξ ⊗ 1A −
∑

(ξ1ξ2 ⊗ 1A − ξ1 ⊗ ξ2)

= ξ ⊗ 1A −ms(ξ)⊗ 1A +
∑

ξ1 ⊗ ξ2

= s(ξ),

so that s∇s = s.

This finishes the proof that s 7→ ∇s is a bijection between the set of splittings of m and the set of

connections on E.

Corollary 8.2 (Connes). A right A–module EA has a connection if and only if EA is projective.

Proof. If EA has a connection, then E ⊗k A → E → 0 splits as a sequence of right A–modules. But then E

is a summand of the free right A–module E ⊗k A, so is projective. Conversely, if E is projective then m is

split, and so E must have a connection. ¤

Examples 8.3. It is easy to check that d : A → Ω1(A) is a connection on AA, for any algebra A. Generalising

this, there is a connection on An
A given by ∇(a1, . . . , an) = (da1, . . . dan). Finally, for a general finitely-

generated projective right A–module P , we have P = eAn for some idempotent e ∈ EndA(An). Then we

may define a connection in P by sending e(a1 . . . , an) to e(da1, . . . , dan). This is called a Grassmannian

connection in [CQ95a, Section 8].

8.2. Right and left connections. In the paper [CQ95a], the above notions of Connes were generalised to

bimodules E. In the following, let A be an algebra and let AEA be a bimodule.

Definition 8.4. A right connection on E is a linear map

∇r : E → E ⊗A Ω1(A)
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such that for all a ∈ A and all ξ ∈ E, we have

∇r(aξ) = a∇r(ξ)

∇r(ξa) = (∇rξ)a + ξ ⊗ da.

A left connection on E is a linear map

∇` : E → Ω1(A)⊗A E

such that for all a ∈ A and all ξ ∈ E, we have

∇`(ξa) = ∇`(ξ)a

∇`(aξ) = a(∇`ξ) + da⊗ ξ.

In particular, we see that a right connection on AEA is a special kind of Connes connection on EA. We

can relate the existence of a right connection to the existence of a splitting in the same way as we did for

Connes connections. To do this, let AEA be an A–bimodule and let ∇ : E → E ⊗A Ω1(A) be a Connes

connection on EA. Then the definition of s∇ leads to the following formula.

s∇(aξ)− as∇(ξ) = (1⊗ j)(−∇(aξ) + a∇(ξ))

for all a ∈ A and for all ξ ∈ E. From this we see that if ∇ is a left A–map, then so is s∇. Conversely, if s∇

is a left A–map, then so is ∇, because 1 ⊗ j is injective. From this, and its analogue on the other side, we

deduce the following corollary.

Corollary 8.5. Let A be an algebra and AEA an A–bimodule. Then E has a right connection if and only if

the natural map E ⊗k A → E splits as a map of bimodules. Similarly, E has a left connection if and only if

the natural map A⊗k E → E splits as a map of bimodules.

Definition 8.6. Let A be an algebra and E an A–bimodule. A bimodule connection on WE is a pair

(∇`,∇r) where ∇` is a left connection on E and ∇r is a right connection on E.

Proposition 8.7. [CQ95a, Section 8] Let A be an algebra and E an A–bimodule. There is a bimodule

connection on A if and only if E is a projective object of A− Bimod.

Proof. If E has a bimodule connection, then there exist bimodule maps s1 : E → E⊗kA and s2 : E → A⊗kE

which split the respective multiplication maps. Then it is easy to check that (s2⊗ 1A)s1 : E → A⊗k E⊗k A

splits the map a⊗ξ⊗b 7→ aξb. Hence E is a summand of the free A–bimodule A⊗kE⊗kA ∼= (A⊗kAop)⊗kE,

and so is a projective bimodule.

Conversely, if E is a projective A–bimodule, then there is a bimodule splitting s : E → A ⊗k E ⊗k A.

If m` : A ⊗k E → E and mr : E ⊗k A → E are the natural maps, then it follows from the above that

(∇(m`⊗1)s,∇(1⊗mr)s) is a bimodule connection on E. ¤
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Recall that we showed that an algebra A is quasi-free if and only if Ω1(A) is a projective bimodule if and

only if Ω1(A) has a right connection. (See Section 7.1.) In view of Proposition 8.7, Ω1(A) should also have

a left connection. The following proposition answers the question: what happened to the left connection?

Proposition 8.8. [CQ95a, Proposition 8.5] Let A be an algebra. Then Ω1(A) has a left connection if and

only if it has a right connection.

Proof. There is a bijection between left and right connections on Ω1(A) given by sending a right connection

∇r to ∇` := ∇r + d.

To show this, we identify Ω1(A)⊗A Ω1(A) with Ω2(A) via multiplication, as in Proposition 4.13. Then a

right connection on Ω1(A) may be viewed as a linear map ∇r : Ω1(A) → Ω2(A) which satisfies ∇r(adbc) =

a∇r(db)c + adbdc for all a, b, c ∈ A. Setting ∇` = ∇r + d, we compute

∇`(adbc) = a∇r(db)c + adbdc + d(adbc)

= a∇r(db)c + adbdc + d(adb)c− adbdc

= a(∇r + d)(db)c + dadbc

= a∇`(db)c + dadbc

which shows that ∇` is a left connection. Similarly, if we start with a left connection ∇` on Ω1(A), then

∇r := ∇` − d is a right connection. ¤

Exercises 8.9. Exercises on connections.

(1) Show that if A is an algebra and ∇r is a right connection on AAA then A is separable.

(2) Show that, for any algebra A and any n ≥ 0, there is a one-to-one correspondence between left

connections on Ωn(A) and right connections on Ωn(A).

9. Going further

In this course, we did not cover all of the paper [CQ95a]. Some of the omitted sections are, in particular:

Propositions 2.6 to 2.8 (relative forms on a tensor algebra); Proposition 2.9, Corollary 2.10 (cotangent exact

sequence); Proposition 2.1 (uniqueness of separability element); Proposition 5.4 (quasi-freeness of a limit

of quasi-free algebras); Section 6 (formal tubular neighbourhood theorem); Section 7 (universal liftings and

separability elements); Section 8 (geodesic flow and the exponential map - this was briefly discussed in class).

Many of the results in [CQ95a] should not be considered in isolation. They were proved in order to be

used in subsequent papers. Therefore, anybody who wishes to understand these results fully should look at

the papers [CQ95b], [CQ95c], [CQ97]. A first step in studying these papers is to read about cyclic homology,

which we were not able to cover due to lack of time. A reference for this is the book [Lod92]. In order to

study cyclic homology, spectral sequences are essential. An excellent introduction to spectral sequences can

be found in the lecture notes [Vak07].
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Other sources of information about quasi-freeness are [Gin05, Section 19] and the references therein. There

are 61 references to [CQ95a] listed on Mathscinet. It is worth looking at them to get an idea of how the

notion of quasi-freeness is used in noncommutative algebra.
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