ALGEBRAIC GEOMETRY

ABSTRACT. These notes were taken from a second course in algebraic geometry given by
M. Stillman at Cornell University in autumn 2007. The rough notes taken in class were
transcribed by R. Vale, who is responsible for any errors or spelling mistakes.

The reader is assumed to have read chapters I and II of the first volume of Shafarevich’s

“Basic Algebraic Geometry”, 2nd edition.

1. EXAMPLES

Example. Let L, M C P? be two disjoint projective lines. Let ¢ : P! — L and ¢ : P* — M

be isomorphisms. Let

X =[]t c P

tep!
Take the coordinates on P? to be z,v, z,w. By making a projective change of coordinates,

we may arrange that L = V(z,w) and M = V(x,y). We have

$:(s:t)—(s:t:0:0)

Yi(s:t)—(0:0:s:1)

So the line ¢(s : t)y(s : t) is the set
{(as:at:bs:bt): (a:b) € P}

So P! x P! — X C P3. This is a surjection by definition of X. So X is the image of a
morphism from P! x P! and hence X is an algebraic set. Since X is the image of something
irreducible, X is irreducible. Since X contains two distinct lines L and M, the dimension of
X cannot be 0 or 1. Hence, X has dimension 2. But X is contained in V (zw — yz) which is

itself a closed irreducible subset of P? of dimension 2. So X = V(zw — yz), a quadric.

Example. Let C' C P™, D C P" be smooth curves and ¢ : C' — D an isomorphism. Let

P, P* C P! be disjoint linear spaces (think of it as putting P™ in first lot of m + 1
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coordinates and P" in the last n + 1 coordinates). Define

X = U p¢<p) C ]P)m+n+1'

peC

If C, D are rational normal curves then X is called a rational surface scroll.

First question: is X algebraic? Let’s take C' to be a line.
C % ]Pl N Pm+n+1

(p, (5 :1)) = sp+to(p)

is regular because ¢ is. If C' is projective then C' x P! is projective. So the image of C' x P!
under any regular map is closed, and therefore is algebraic.

Next question: what is dim(X)? X is irreducible since it is the image of C' x P!, and
so also it has dimension < 2. But X contains C' and a point not on C, so X (which is
irreducible) must have dimension exactly 2. Note that we have shown that there is a regular
map C' x P! — X. Projection onto the first m + 1 coordinates is a rational map X --» C
which yields a rational map X --» C' x P! which is inverse to C' x P! — X. Therefore X is
birational to C' x P!,

Exercises.

(1) Check that the map X --» C' x P! is a well-defined rational map which is inverse to
CxP!'— X.

(2) Let D be a conic in P? and P! = C' — D an isomorphism. Let X = Upecm C Pt
Show that X 2 Bl (P?).

(3) Suggested problems from Shafarevich III.1, numbers 1,4,12,18.

2. WEIL DIVISORS

Let X be an irreducible variety. Often X is assumed to be smooth, or sometimes we need
only assume that X is smooth in codimension one, that is, sing(X) has codimension at least

2in X.

Example. A basic example. On A, let f = é%&l))f((;—:j% € k(A'). Then the divisor div(f)
2

of f is (count poles and zeroes with multiplicities) div(f) = 2[—1] + [2] — 4[—3] — 3[x].
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Definition. A prime divisor C' on X is an irreducible codimension one subvariety. A divisor
D =k Cy 4 ko Co + - - - + k,.C,. is a formal sum of prime divisors C; with k; € Z. D 1is called
effective if all the k; are nonnegative and D # 0. We write this as D > 0.

The support supp(D) of D is Uy, 20C;.

Div(X) is the free abelian group generated by the prime divisors.

2.1. Divisor of a function. Let f € k(X)* := k(X) \ {0}. We can define

dv(f)= S wlf)C

ccx
C' a prime divisor

where ve(f) is the order of the zero of f along C', or —(the order of the pole of f along C').
Here is how to define vo(f). Assume X is smooth. By Chapter II of Shafarevich, we can
choose some open affine U C X so that U N C' # @ and such that the ideal Ioqy of Cin U
is generated by a single element 7 € k[U] (this is called choosing a local equation for C'). If
f is a regular function on U, ie. f € k[U], then there exists £ > 0 such that f € (%) but
f ¢ (7**1). This uses the fact from commutative algebra that Ny (7¢) = 0. Set va(f) = .
If f=4%¢ek(U) with g,h € k[U] then set vo(f) = ve(g) — vo(h). Several things need to be

checked (as an exercise):
(1) ve(f) doesn’t depend on the choice of U or 7.
(2) vo(g/h) doesn’t depend on the particular choice of f = g/h.
(3) Given f € k(X)*, {C :vc(f) # 0} is finite.

Some properties of vo(f) are:

e ve(fg) = ve(f) +velg)
o vo(f 4+ g) > min{ve(f), ve(g)} with equality if vo(f) # ve(g).

Some basic properties of div(f) are

(1) div(fg) = div(f) + div(g).
(2) div(f) =0 if f € k*.
(3) div(f) > 0 if f € k[X].

2.2. Divisor class group. Let P(X) be the subgroup of Div(X) consisting of div(f) for

f € k(X)* (the subgroup of principal divisors).
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Definition.
ClI(X) = Div(X)/P(X)

is the class group of X.

If D, E € Div(X), we write D ~ E and say D and F are linearly equivalent, if D — E =
div(f) for some f € k(X)*.

2.3. Simple properties. Assume X is smooth and irreducible.
Proposition. div(f) >0 = f is reqular on X.

Proof. Suppose f is not regular at p € X. Write f = ¢g/h with g,h € Ox,, but g/h ¢ Ox,.
Since X is smooth, Oy, is a UFD, so we can choose g, h relatively prime. Let 7 | h, 7t g
and 7 a prime element of Ox,. There exists an open set U > p such that V(7)) N U is
irreducible of codimension one. Let C' = V(7)NU C X. Then vo(f) < 0. Contradiction.
So f is regular at p. 0

It follows that if X is smooth and projective then div(f) > 0 implies f is constant. So
div(f) = div(g) implies f = ag for some o € k*.

Examples.

(1) X = A™. Recall every codimension one subset of A" is principal (ie. defined by a
single equation). So CI(A™) = 0.

(2) X = P". Prime divisors are V(F), F' € k[Xo,...,X,]s homogeneous of degree d
and irreducible (this is a result from earlier in Shafarevich). If f € k(P")* then

f= Zgb with 3" a;degF; = 3" bidegG,. Then div(f) = S a;V(F) — S b;V(G)).
So

Div(X) - Z — 0
D= Z a;C; — degD = Z a;degC;
has kernel exactly P(X), and so CI(P") = Z.

Exercises.



(1) X = rational scroll given by line and conic, X C P*. Compute Cl(X), using X =
Bl (P?).
(2) Show CI(P™ x P") = Z?2, or even for m =n = 1.

3. CARTIER DIVISORS

These are also called locally principal divisors. Suppose X is a smooth irreducible variety.
If D=5 a;C;is a Weil divisor, a; € Z, then by Shafarevich II.3, Theorem 1, C; has a single
local equation near every smooth point. That is, there exists an open affine cover such that
if U is an open set in the cover then C; N U is defined by m; € k[U] and

D|y = Z a;C; NU = div(af* - 7).
CiNU£2

Therefore, on a cover {U;}, we get f; € k(X)* such that div(f;)|v, = D|y,.

Definition. Let X be an irreducible variety (doesn’t need to be smooth!) A Cartier divisor
or locally principal divisor on X is a system of data {(U;, f;)} where

o {U,} is an open cover of X.

o fi e k(X)".

o fi/f; and f;/fi are reqular on U;NU; for alli,j.

3.1. Going back and forth. Cartier ~» Weil.
Given {(U;, fi)} a Cartier divisor on X, let D =Y ccx  keC where if CNU; # @,

prime divisors

set ko = vo(f;). Check: if U; N C # @ then vo(f;) = ve(fi - %) = ve(fi) +ve(fi/fi). But
ve(f;/fi) = 0 since f;/f; is regular and has no poles on the dense open set U; N U;. Check
as exercise: for a finite cover {U;}, only finitely many of the ke can be nonzero.

Weil ~» Cartier.

Assume X is smooth. We did this above in the definition of Cartier divisor.

Example. X = V(y? —2%) C A%, p = (0,0) is a prime divisor but not locally principal,
loosely speaking because “div(z) = 2p”, “div(y) = 3p”.

In the definition of Cartier divisor, {(U;, f;)} and {(V}, g;)} are considered the same if

fi/g; and g,/ f; are regular on U; NV for all ¢, .
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Group structure: if D = {(U;, fi)} and E = {(V},g;)} then D+ E = {(U; NV}, figj)}.
Check that this matches up with the addition for Weil divisors in the situation where these
Cartier divisors correspond to Weil divisors.

Writing CaDiv(X) for the group of Cartier divisors, we get
CaDiv(X) — Div(X)
is an isomorphism of abelian groups for X smooth and irreducible.

Definition. A principal Cartier divisor is div(f) = {(X, f)} for f € k(X)*. The subgroup
of CaDiv(X) consisting of the principal Cartier divisors is denoted CaP(X).

Under the above isomorphism, CaP(X) is identified with P(X).
Definition. The Picard group

Pic(X) = CaDiv(X)/CaP(X)

Theorem. If X is smooth and irreducible then Pic(X) = CI(X).

Example. If X C P" is smooth and irreducible, let F' € k[zo,...,z,] be a homogeneous
form of degree D which does not vanish identically on X. We may associate a Cartier divisor

to F.

Definition.

div(F) = {(U; := X\ V(x;), F/x)}
1s the Cartier divisor associated to F'.

This is really a Cartier divisor because (z;/x;)¢ is regular on U; N U; for all i, j. What’s
the corresponding Weil divisor? Factor F'in k[zo,...,z,] as F = F{"* --- F% with a; > 1, F;
irreducible. Then div(F) =>_"_, a;V(F;) as a Weil divisor.

3.2. Support of a Cartier divisor. If D = {(U,, f;)} is a Cartier divisor then
supp(D) = {p € X : if p € U; then fi(p) =0 or f; is not regular at p}.

Exercise. Let Q C P? be Q = V(zxw — yz). Find the dwisor of y/x as a Weil and as a

Cartier divisor. Do the same for x and fory.
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4. SOLUTIONS TO SELECTED EXERCISES

To T1 T2

() p=(1:0:0), B,(P?) =V C P* (via Segre embedding). Take a

T3 T2 Ts

conic C to be V(xy — 2z?) C P2. Isomorphism ¢ : P!, — C is given by (a : b) — (a? :

b* : ab). Embed these in P* as (a:b:0:0:0)and C = (0:0: 2 :y: 2). Then the
line po(p) is (sa : sb: ta® : th* : tab), and X = set of all such points in P*. The points
(Yo : Y1 : Y2 = Y3 ya) of X satisfy the equations yoys = y1ys, Y192 = Yola, Y23 = Ys-
If we identify y, = x9, yo = x1, y3 = x5, Yo = xg and y; = x3 then we see that this
is isomorphic to Bl,(P?) as was claimed. Under the Segre embedding of BL,(P?) into
P>, a point ([29 : 21 : 22], [p : q]) is mapped to (20p : 21D : 22p : 20q : 21q : z2q) Which
we identify with (zop : 21p 1 22p : 20¢ : 22¢) € P* since the equations for the blowup
say zop = z1q. Since the exceptional divisor E is given by z; = 2o = 0, we see that F
corresponds to V (z1, xq, x5) as a subset of X.

(2) To compute div(z) on X = V(zy = 2w) C P!. On U, = {z # 0} we have z/x = 1
so divisor is just (U,, 1) or 0 as a Weil divisor. On U, we must consider z/y. The
ring k[U,] = k[z, z,w|/(z = zw) = k[z,w], so the divisor of z/y here is L + M where
L = V(z,z) with local equation z and M = V(w, x) with local equation w. For every

prime divisor C' on X, either CNU, # @ or CNU, # &. So we have computed
enough, and div(z) = L + M.

5. PULLBACK OF A DIVISOR CLASS

The following useful proposition is in Hartshorne but not in Shafarevich.

Proposition. Let X be a smooth variety, U C X dense and open, Z = X \ U.

(1) If codimxZ > 2 then CI(X) = CI(U).
(2) If Z=7Z,UZyU---UZ.UW where the Z; are prime divisors and codimxW > 2,

then there exists an exact sequence
7" — Cl(X) - Cl(U) — 0

where e; € 2"+ [Z;] and D € CI(X) + D|y. The first map may not be injective.
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Proof. We check that C1(X) — Cl(U) is well-defined. If D ~ E on X then D — E = div(f)
for f € k(X)* = k(U)*. So D|y — E|y = div(f)|y = divy(f), ie. the divisor of f regarded
as a rational function on U. So we do have a map Cl(X) — CIL(U). This map is surjective
because any prime divisor C' € Div(U) is the image of the closure C' € Div(X). We only
need to show that the kernel of this map consists of linear combinations of the Z;. If
D = >"n,C; + Y. m;Z; is in the kernel, then > n;C; = 0. So there is an f € k(U)* with
div(f) = > n;C;. But then f € k(X)* and div(f) is > n;C;+ (some combination of the Z;).

So D is also a combination of the Z; as required. O

5.1. Relationship of divisors and regular maps. Let ¢ : X — Y be regular where X, Y
are smooth irreducible varieties. Let D € Div(Y). We want to define a pullback or inverse

image ¢*D of D.

Example.

P<cf

where Q = P! x P! is a quadric in P3. Then @ C P? is a prime divisor. H = V(z) is another
prime divisor. What should ¢*@) and ¢*H be? Basically, ¢* H should be the inverse image
of z = 0; a line. But ¢~'Q = P! x P!, which is not a divisor.

Let D = {(U,, f;)}, a Cartier divisor on Y, f; € k(Y)*. Suppose ¢(X) € supp(D). Let
¢*D = {(¢7'U;, ¢* f;)}. Check that ¢*D is a Cartier divisor on X (indeed, {¢~'U;} is a cover
of X and ¢* f; € k(X)* because ¢(X) € supp(D).)

If D, E € Div(Y) and ¢(X) ¢ supp(D) Usupp(E) then ¢*(D + E) = ¢*(D) + ¢*(E).

If ¢ is surjective, or even dominant (meaning ¢(X) dense in Y), then ¢(X) can never
be contained in supp(D) and so ¢* : Div(Y) — Div(X) is well-defined and induces ¢* :
CI(Y) — CI(X).

Examples. Suppose X,Y smooth, ¢ : X — Y regular, D C Y prime (eg. X,Y curves, ¢
finite, D pt.) What is supp(¢*D)? Looking at the local picture, choose U C Y affine open
such that V' = ¢~1U is affine and with D|y = (m) C k[U] (note to self: why can you choose
a U like this?)



¢ is pullback of functions. ¢*(D) defined by ¢*m = mo ¢ on V. Can’t have poles on V
(it’s a regular function). Zeroes; (w0 ¢)(q) = 0 implies 7(4(q)) = 0, g € V ie. ¢(q) € D|y.
So g € ¢71(Dly). So supp(¢*D) = ¢~'(D) (D prime).

6. MOVING THE SUPPORT OF A DIVISOR

Last time: ¢ : X — Y regular map, X, Y smooth. D € Div(Y), ¢(X) € supp(D). Can
define ¢*D € Div(X).

Example. Suppose ¢ € k(X)*. Then ¢ defines a function ¢ : X — P!, a regular map if
X is a smooth curve, since the codimension of the set of points where ¢ fails to be regular
is > 2. Exercise: ¢*(0) — ¢*(00) = ¢*(0 — 00) = div(¢). This is OK if ¢ is not constant,
because ¢(X) is either a point or all of PL.

Example.
i:C—=P°>D

C, D smooth irreducible curves, C'# D, eg. D line.

Exercises.

(1) What is i*D € Div(C)?
(2) What about if D = C'? (we’re about to define it).

Theorem 1 (Moving the support of a divisor). For any divisor D on a smooth X and any

finite number of points Py, ..., P, € X, there exists D' ~ D such that Py, ... P, ¢ suppD’.

Corollary. Let ¢ : X — Y be a reqular map of smooth irreducible varieties. Then there is

an induced group homomorphism a = ¢* : CI(Y') — CI(X).

Proof. Construction/proof for corollary: If D € Div(Y) and ¢(X) ¢ supp(D) then ¢*D has
been defined. Take a = ¢* on the class group. If D € Div(Y) and ¢(X) C supp(D) we can
choose D" ~ D such that ¢(X) ¢ supp(D’) (take x € ¢(X) and D’ ~ D with = ¢ supp(D’).)

Then define o([D]) = [¢*(D’)]. Check as an exercise that this « is well-defined. O
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Example. Let X = smooth quartic curve in P2. Real picture might look like:

b

D =p+q. Find D' ~ D which misses p and q.

First try: can we write p + ¢ ~ p’ + ¢ for some p/, ¢ € X not p,q? No! (cf. if D = p and
D ~ p' then 3¢ : X — P! with one zero and one pole. Therefore has degree 1, therefore ¢
iso. But X 2 P).

The problem can be simplified to: given D = p, find D’ ~ p but missing p, ¢ (if so, get
also D" ~ ¢ missing p,q and so p+ g ~ D'+ D" as claimed). Want p + div(¢) to miss p, q.
Let ¢ be the equation of a line through p which doesn’t go through ¢ and is not tangent to
p (you can find one since X is smooth). Let m = equation of a line in P? missing p and q.

Let ¢ = m/¢. Then

div(¢) =r1+ra+r3+714—p— 51— 82— 83

Vv Vv
not p or q not p or q

So p ~ p+ div(¢) < support doesn’t contain p or g.

Exercises. (1) Suppose ¢ : X --» Y C P" is a rational map, X,Y smooth. Show there
exists a homomorphism ¢* : CU(X) — CUY') (idea: set of points where ¢ is not
reqular, called base locus, is of codimension at least 2).

(2) X = Bl,.(P?) and E C X exceptional locus. P* = F L XOE.
i*(E) € CI(P') = Z. What is it?

6.1. Proof of theorem 1. WLOG assume D is a prime divisor, X affine (to do this, take
a hyperplane not containing any of the points p; and intersect its complement with X).
Assume by induction that pi,...,p,_1 ¢ supp(D) but p,, € supp(D). Find D’ ~ D such
that p1,. .., Pm—1,Pm & supp(D’). Our plan: find a local equation of D missing py, ..., p,, in
k[X].

First, let m € Ox,,, be a local equation for D in a nbd of p,,. Now let m € k[X] be a

local equation for D in a nbd of p,,. This can be accomplished by clearing denominators as
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follows. The divisor of poles diva, (1) is Y keFy with p,, ¢ Fy since m; is regular at p,,. Let
fe € k[X] be a function which vanishes on Fy but does not vanish at p,,. Since we assume
X is affine, there exists such a function on the ambient A", and we can just restrict it to X.

Take my = m; ] f¥*. (Continued in next lecture).

7. RIEMANN-ROCH SPACES

7.1. Rest of proof of Theorem 1. 7, is a local equation of D in a nbd of p,, since
fi € Ox,,, for all . Each ff‘ cancels at least a k,Fy from (m), so my is regular on X.
Now we choose m € k[X] alocal equation for D near p,, such that 7(p;) # 0,1 <i <m—1.

This can be done as follows. For 1 < i < m — 1, let ¢g; € k[X] vanish on D and on

D15 D25 - - s Die1s Dit1s - - - » Py 9i(Di) # 0. Let
m—1

7T:7r2+2aigi2, o; €k
i1

be such that 7(p;) # 0, 1 <4 < m—1. To do this, choose «; such that ma(p;)+a;(g;(p;))? # 0.
Note that in Ox,,., T = ma(1 + m > ;3?) where g; = Bims for some 3; € Ox,,,. Since
1+ m Y a0 is a unit in Ox,,, © € k[X] is a local equation for D near p,, such that
m(p;)) #0,i=1,2,...,m—1. Finally, D' = D — div(nr) = — > r;Ds, rs > 0 (as a divisor
on X - now we are including the non-affine part which was deleted at the beginning of the
proof). So div(w) = D + > r,D,. Note py,...,pm-1 ¢ supp(D’). What about p,,? p,, ¢ Ds
for any s by construction, since div(w)|y = D so D, N U = @ for all s for some U 3 p,,. So

Pm ¢ supp(D’) = D — div(m).g

7.2. Linear systems.

Example. P. | k(PY) = k(t), t = y/x, poo = (0 : 1) € PL. Then degf(t) < n if and only if

Ty
div(f) > —n - peo, i€. div(f) + nps > 0. (Because

n n—1
<g> + a1 <g> + -4 ap
x x
has a pole of order n at o).

Definition. As usual let X be smooth, D € Div(X). Define

L(D) = {f € k(X)" iSiV(f) +D >0} U{0}



the Riemann-Roch space, also called H°(D).

Remarks.

(1) L(D) is a vector space over k.
(2) Theorem: If X is projective then dim L(D) < oo for all D.
(3) Define ¢(D) := dimy L(D).

Example. X = curve, p,q,r € X. Then

L(p+2q—r)={f € k(X)": f has at most a pole of order one at each of p, q,

f does not vanish at r. No other poles, but maybe other zeroes.}

Example. On P!, L(npy,) = {f = % with ¢ homog of degree n}. L(0) = k (X projec-
tive). L(—C) =0, C prime divisor.

Exercises.

(1) Let E C P? be a smooth plane cubic (ie. choose one). Choose p € E. Find L(p),
L(2p) and L(3p).

(2) Let X =V (23y + y*z + 2%z) C P? be the Klein quartic. Show:
(a) X is smooth.
(b) p=1(0,0,1). Fine L(p), L(2p), L(3p).

(3) Pencil of conics example from Shafarevich.
8. LINEAR SYSTEMS
Recall: X smooth, L(D) = {f € k(X): D +div(f) > 0} U {0}, a k—vector space.
Theorem. If X is projective then dim L(D) = ¢(D) = h°(D) < oo.
Proposition. If D ~ E then L(D) = L(FE).
Proof. If D — E = div(g) then
L(D) — L(E)

f—Tfg
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and div(f) + D > 0 implies div(f) + div(g) + E = div(f) + D = div(fg) + £ > 0. O

Definition. Let W C L(D) be a vector subspace. Then {D + div(f) : f € W\ 0} is called
a linear system.

|D| :={D +div(f): f € L(D)*}
is called a complete linear system/series. This is the set of all effective divisors linearly

equivalent to D.

Examples. (1) X = P!, p € X. Then |p| = {D +div(f) : f € L(p)*} = {D : D ~
p and D effective.}. D has to have degree 1 (not proved yet) and so |p| = {q € P! :

q~p}=P
(2) If X = E C P? is a smooth cubic, it turns out that p ~ D, D effective, implies D = p.
So [p| = {p}-

(3) X =P2 L = line. Then |L| = set of all lines in P2. If M is a line then the divisor of
the rational function m/¢ is M — L, where m, £ are the equations of M, L respectively.
You can’t get anything else because if div(f) = D — L with D effective then f has
poles of order one exactly along L, so the denominator of f is forced to be ¢. But
then the numerator must have degree 1.

Let p € P2. Then |L|(—p) := {M € |L| : p € M} is a linear system. Here
W ={fekX):feL(L),f(p)=0}U{0} ={F:m(p) = 0} (check as exercise).

Remark. Suppose L(D) = span(fo, ..., fr). Then |D| =2 P". In fact, |D| = P(L(D) \ {0}).

Note: if D ~ E then |D| = |E|.
If W C L(D) is a vector space then PW C D.

Let W C L(D) and V' C D be the corresponding linear system.

Definition. The base locus of V' is

ﬂ supp(FE).
EeV
If C is a prime divisor and C' C base locus of E, then C' is called a base component of E.
If the base locus of V' is @, then V is called basepoint-free.

Example. |L| in P? is basepoint-free, since there are three lines with L; N Ly N Ly = &.
13



Example. |L|(—p) has base locus p.

Example. Let £ C P? be a smooth cubic. Let p € E, let V = lines through p, that is,
i: E — P2 Let V = {i*L : L C P?line with p € L}. p is a base component because
i*L = p+x+y for any L, where x, y are some points on F (this is a consequence of Bézout’s

theorem - see later). Then
{i*L—p:pe L} Cl|i*Ly— p|
where L is some choice of line. Check as an exercise that this is actually an equality.

8.1. Construction of rational maps. Let X be projective and W C L(D) be a subspace
and V' C |D| be the corresponding linear system. Let fy, ..., f, be a basis for W. Define

ow X --» P"
= (folz): filx) - fir())

If V has no base components then the domain of definition of ¢ is X\ base locus. If V' has

base components, it can be larger.

Exercises.

(1) If V is basepoint-free, then v is reqular.

(2) If H € Div(P") is a hyperplane then find o3, (H) and show ¢}, (H) ~ D, assuming V
has no base components.

(3) If p : X --» P" is any rational map and D = ©*(H), then there is W C L(D) such
that ¢ = Py .

Exercise. X =P', p=(0:1). Find ¢35y : P* ——» P". What is r?

9. DIVISORS ON CURVES

Let X be a projective smooth curve. If D € Div(X), D = >\ np;, p; € X. Define

deg(D) = > _n;. y



Theorem. If f : X — Y is a reqular map of smooth irreducible projective curves (ie. a
rational map) such that f(X) =Y (ie. f is not constant) then deg(f) = degf*(q) for all
qgey.

Corollary. deg(div(g)) =0 for all g € k(X)*.

Proof. g : X — P! If g € k* then div(g) = 0 so done. If g ¢ k*, then g is a surjective map
to P!. Then div(g) = ¢g*(0) — g*(o0) so deg(div(g)) = 0. O

Definition. C1°(X) = Pic’(X) = {D € CI(X) : deg(D) = 0} (well-defined since D ~
E = deg(D) = deg(F)).

Corollary. X smooth irred projective curve. Then X = P! iff CI°(X) = 0 iff every degree

zero divisor 18 principal.

Proof. ( =) holds since CI(P') = Z. Conversely, if C1"(X) = 0 then for any p # ¢, p —q €
CI°(X), so there is a g € k(X)* such that g : X — P! has degree 1. So [k(X) : k(P")] =1
and k(X) = k(P!) (via g). Therefore, X = P! O

Theorem. Let X be a smooth projective irreducible curve, D € Div(X), L(D) # 0. Then
(1) dimy, L(D) < deg(D) + 1.
(2) If X 2 P! then dimy, L(D) < deg(D).

In particular, dimy, L(D) < oo for all D € Div(X).

Proof. WLOG we may assume D is effective. L(D) = {f € k(X)*: D +div(f) > 0} U {0}.
Therefore there exists f € L(D) with f # 0 and F + div(f) >0, E ~ D so L(F) = L(D).

dimL(0) = 1.

dimL(p) =7.

If f € L(p)\ L(0) then div(f) = ¢ — p, ¢ # p. So by the above theorem, X = P!
So if dimL(p) > 2 then dim L(p) = 2 by direct calculation for P'. Now suppose D =
p1+ p2+ -+ + pg where d = deg(D) and some of the p; can be the same.

L(0) C L(p1) C L(p1 +p2) C -+ L(p1 + p2 + - + pa) = L(D)

Claim: dim(L(E + p)/L(E)) < 1. If so, dim L(D) < deg(D) + 1 and if X 2 P! then

dim L(D) < deg(D). To prove the claim:
15



Suppose E = (n —1)p+ E’, p ¢ supp(E’'), n > 1. Let 7 € Ox, be a local equation for
p € X. Suppose f,g € L(E+p)\ L(E). Then f, g have poles of order < n at p so f = a/7",
g = (/7" where o, 8 € Ox,, and «(p), B(p) # 0. Then
afB(p) — fa(p
B)f - alpyg = LR_P2@)

,/Tn

The denominator has a factor of m because it is zero at p. So B(p)f — a(p)g € L(E). This

proves the claim. O

9.1. Rational maps and linear systems. X projective smooth irreducible variety. f =
(fo: fi:-:fr): X -=» P". f gives a linear system W C L(D). Find a D such that
fi € L(D) for all 4, so (f;) + D > 0. div(f;) = > °_, n;;C; with C; prime divisors, and some
n;; allowed to be zero. Let k = min{n;;}, D = >_; —k;C;. Then f; € L(D) for all i since
ni; —k; >0 for all j and all . Then W = kfy+--- + kf, is a subspace of L(D) such that f
is .

(ie. every rational map to P" comes from some linear system,).

10. SOLUTIONS TO SELECTED EXERCISES

(1) E:Y?*Z=X3*+27% p=(0:1:0). The exercise is to find L(p), L(2p) and L(3p).
Ux,Uy,Uy open sets. On Uy, 4?2 = 1+ 23. Can ignore this set since z = 0 implies y # 0,

so Uy U Uy cover.

Uy :z=a2+ 23

Uz =2 +1

L(p) D k. Functions on y* = x® + 1 that can have a pole at co are z, y, x +ay. Look at z/z2,
y/z (in order to be able to compute something). On U, consider div(x/z). Local equation

at (0,0) is x = 0 because z(1 + 2)(1 — 2) = 23 so 2 = —52% € (r) C Ox,. Alternatively,

1—22

you could argue that a local equation is given by an element of m \ m2. But z € m? so x

must be a local equation. £ = (1—2%)% = (unit) x 272, So v,(x/z) = —2. Same calculation
16



yields v,(y/z) = vp(1/2) = —3. £ can’t have other poles because it is regular on U,. You get

L(p) =k
L(2p) =k + k%
L3p) =k + k= + k2
V4 z

where L(p) = k either because X is not rational, or (better) because = + ay can never have
a pole of order 1 at p, since x has a pole of order 2 and y has a pole of order 3 there.

(2) P2, x P, = P2 X = V(yt — zs). Then o|x : X — P?is Bl oqP? E C X is
V(y, z), the exceptional divisor of the blowup. i : E — X gives a map i* : C1(X) — CI(E).
The exercise is to find i*(E).

Need D € Div(X) such that D ~ E and E ¢ supp(D). Let U = U, x Uy, ie. xs # 0
ie. U= X\V(zs). On U, E = V(y). Consider z/y. Then div(z/y)|y = —F since
kU] = % =~ kly,t]. z/y =z -y~ ! and y is a local equation for F on U.

Now we need to look at X \ U = V(xs,yt — zs) = V(x,yt — zs) UV (y,s). Let C; =
V(z,yt — zs) and Cy = V(y, s). Need to compute ve, (z/y) and ve,(z/y).

Take U = U, x U, UNCy # 2, U NCy # 2. On U', Cy = V(y) and C; = V(x). So

div(z/y)|vr = C1 — Cy and so overall
le(l'/y) = Cl — CQ —F

(note that it doesn’t have degree zero! It doesn’t have to, since this is not a curvel!).
Now calculate i*(Cy — Cy) = i*(E). The claim is that this is —¢ for some ¢ € E. C1NE =
V(z,y,z) = @ soneed only consider CoNE. As a Cartier divisor, Cy = {(U’,y/2), (U, 1),...}.
i*(y/z)on Eis s/t. CoNE=(1:0:0)x(0:1)=px(0:1)=:q. So*(Cy —Cy) = —q.
E = P! so D ~ (deg(D)) - (a generator) for any D. So i*(F) = —1 as an element of CI(P').

11. DIVISORS ON CURVES, PART II

Theorem. f: X — Y surjective reqular map where X and'Y are smooth projective curves.

Then deg(f) = degf*(q) for allq €Y.

Working on proof: (note that f is a finite map by Shafarevich II, 5.3, theorem 8, so deg( f)

is well-defined). More notation: f*: k(Y) — k(X) is an inclusion of fields. We will regard
17



k(Y) C k(X). Degree of the extension is [k(X) : k(Y)] = deg(f). Let {p1,...,p.} = f1(q).

Let O = Mi—1Ox p,, ie. those rational functions which are regular at each of the p;.

KY) C k(X)
U U
Oy7q C @

[Once we do sheaves, we really have Oy — f.Ox and Oy, — (f.0x), = O].

Lemma 1. O is a PID, with exactly r prime ideals (so in particular is a semilocal Ting).
There exist t1, ..., t, € O such that Up,(tj) = 6;5 for 1 <ii,j <r.

If u € O is nonzero then u =t - - - thrv where k; = vy, (u) and v is invertible.
The lemma is proved in Shafarevich.
Lemma 2. O is a f.g. Oy,,—module (comes from the fact that f is a finite map).

Lemma 3. O is a free Oy,,—module of rank n = deg(f). [f«Ox is a locally free Oy -module
of rank n = deg(f)./

Proof of the theorem from Lemmas 1,2,3: Let ¢t = local parameter at ¢ on Y. That
is, t € my,q \ My, Sot € O (really we mean f*t but we ignore the f* in the notation).
So t = tH...tky where k; = 1,,(t) and v is invertible in O. So f*(q) = 3 kipi. So
degf*(q) = 22:1 k;.

& @) ) (t)

It is easy to see that dimg(O/(t%)) = k; (c.f k[t]/(t*)). So dimi(O/(t)) = 3 k; = degf*(q).
Note Oy, /(t) = k. But O = O?ﬁegf. So

G- ()

Proof of Lemma 3 from Lemmas 1 and 2: O is a f.g. Oy module. So O =

of dimension n. So n = degf*(¢)o

(torsion)@®(free). But O O Oy, sits inside k(X), a field. So torsion part is zero. So
18



0= Oy, We need m = deg(f).

k(YY) C k(X)
U U
Oy, ¢ O
we want to show that m = n = deg(f). n = [k(X) : k(Y)]. m = maximal number of

elements of O linearly independent over Oy,. So m = maximal number of elements of O
linearly independent over k(Y') = Frac(Oy,). So m < n. Let ay,...,a, € k(X) be a basis
of k(X) over k(Y). Let t = parameter of Y at ¢ (generates my,). Then t‘ay, ..., t‘a, belong
to O for ¢ sufficiently large. They are linearly independent over Oy, so m > n. Therefore

m = ng

11.1. Bézout’s Theorem.

Theorem. Let X,Y C P? be projective curves. Suppose X is smooth, X € Y (Y may be
singular and may have several components).

Then the sum of the multiplicities of the intersection of X and Y at all points of their
intersection equals deg(X) - deg(Y").

Theorem (Bézout version 2). Let X C P" be a smooth projective curve andY =V (F) C P™
be a hypersurface such that X ¢ V(F) =Y. Then the sum of the multiplicities of intersection
of X and Y at all points of X NY equals (deg(X))(deg(Y)).

To understand this, need the definitions of:

(1) sum of multiplicities of X and Y, denoted X - Y or X - F.
(2) need deg(X).
(3) deg(Y) := degF.

Definition. X - F' (or X -Y') is deg(divy F') where divxF = i*Y, i : X — P".
Note X - F' > 0.

Definition. deg(X) := max{#X N H : H C P" is a hyperplane not containing X} (or, H

is a hyperplane not containing any component of X, if X is reducible.)

Homework problems on divisors on curves: pg. 174, nos. 2,3,4,6.
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12. BEZOUT’S THEOREM

X C P" smooth curve. F € k[x,...,x,] homogeneous form of degree d such that
F ¢ Ix. We defined X - F' to be the degree of the divisor of F' on X. (X — P,
divy F = ¢*divF is the definition). Also, degX = max{|XNH|: H is a hyperplane and H 2

any component of X}.

Remarks. (1) If degF = degG, F,G € k[xo,...,x,] then X-F = X -G since divx (F/G)
(henceforth denoted div(F/G)) = divF — divG has degree 0.
(2) Let L = linear form not in Iy. Then X - F = X - L4 =d(X - L).
3) X-L= ZpeXﬂV(L) vp(divL).

Let p € X and L a linear form not in Ix. When is v,(divLl) = 0,1,2...7 p,(divL) > 0.
When is v,(divLl) = 07

vy(divl) =0 <= p¢ XNV(L) < L(p) #0.

vp(divL) > 2 iff L(p) = 0 and Tx;, C Ty(1)p C Tpnyp. This is a good exercise (and is in
the book). Requires to think about tangent spaces. Add to homework list.

Theorem (Bézout’s theorem). Let X C P" be a smooth projective curve, F € k[xo, ..., x,]

homogeneous, F' ¢ Ix. Then X - F' = (degX)(degF).

Proof. Need only consider the case F' = L is linear. Show X - L = degX. If we can find
a linear form L such that v,(divL) = 1 for all p € X N V(L) then we are done, because
XL =#XnNL. Suppose M is another linear form which gives the maximum value of
#XNV(M)=degX. Then X -L=X-M>#XNV(M). So#XNV(L) > #XNV(M).
So by maximality, #X N L =#X N M = degX.

To find such an L, consider Z C X x (P")* where (P™)* denotes the set of hyperplanes in
P". Let

Z ={(p,V(L)): V(L) is tangent to X at p}.

Make sure you understand that this is algebraic. Exercise: find the equations for it.

N
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7 (p) = px{V (L) : V(L) D Tx,}. Since T, is a line, this is a linear space, so is irreducible
and has dimension n — 2.

X has dimension 1, fibres are all irreducible and have dimension n — 2. So Z is irreducible
and dim Z = (n—2)+1 =n—1. Then m(Z) = bad set of lines, and has dimension < n — 1.
So mo(Z) # (P™)* and so we can find L such that v,(divLl) =1 for allp e X N V(L). O

12.1. Elliptic curves. Review: Chapter 1, Section 1.6, In particular, a smooth plane cubic
X C P? is not rational.

X C P? smooth plane cubic.

Theorem. Let py € X. The map

X — CI°(X)

pr[p—po]=cp
1s a 1 — 1 correspondence.
Proof. 1 —1: if ¢, = ¢, then p —py ~ ¢ — qo. If p # q then p ~ ¢ = X is rational, which
is a contradiction (so injectivity holds for any non-rational curve). To show onto, key point
is given p,q € X, show Ir € X such that p+ g ~ r + po, ie. (p —po) + (¢ —po) ~ 1 — po-
Continued in next lecture. 0

13. ELLIPTIC CURVES
X C P? smooth plane cubic. Let py € X.
X — CI°(X)
p[p—p]=0c

is a 1 — 1 correspondence (1 — 1 was done last time). Key point for surjectivity is, given
p,q € X, dr € X such that p+q ~r + po.

Proof of key point:

Case 1: Suppose p # q. Let L be the line through p and ¢. divL = p+ ¢ + s for some s
by Bézout’s theorem.

Case 2: p=gq. Let L = tgt line to X at p. Then divL = 2p + s (s could equal p).
21



Case a: s # pg. Let M = line through s and py. Then divM = s + py + r. Know
p+q+s~s+py+ rsince divl ~ divM.

Case b: s = py. Take M = tgt line through s. Then divM = 2py + r for some r, and
2p + po ~ 2py + r. Now result follows easily.

The next claim is that if D is effective then there exists p € X such that D ~ p + kpy.

Proof: Induction on degD.

If degD = 1 then D = p, so clear. If degD > 2 then D = D’+q, D’ effective. By induction,
D' ~ p = Kpg for some p. So D ~ p+q+kpy. But p+q ~1r+pgsoD~r+ (k+1)po.
This proves the claim.

In general, if degD = 0 then D = Dy — Dy, D; effective, degD; = degD,. By the claim,
Dy ~ p1 4+ kpg, Dy ~ po + kpg. So D1 — Dy ~ p; — pa. Need to find a pt. » € X such that
P — P2 ~ T — Po, €. p1 + po ~ 1+ pa. Apply the “key point” from above, with py replaced

by pa, so there does exist such an r. So we have shown that X — C1°(X) is surjective g

Theorem. Let X C IP? be a smooth plane cubic. Then
(D) =deg(D)  (x)

for all effective D € Div(X), D # 0. Conversely, if (%) holds for a smooth projective curve

X, then X 1is isomorphic to a smooth plane cubic.
Proof. Fix pg € X. We know D ~ p+ (d — 1)pg, d = degD for some p € X. Consider
L(0) C L(p) C L(p +po) C -++ C L(p + kpo).

We have L(0) = L(p) = k because X is not rational. The condition (x) is equivalent to the
inclusions after the first step being strict. Claim: L(p+(a—1)pg) € L(p+apy) for all o > 1.

L(p) € L(p+ po). Let Ly = line through p and po; divL; = p+ po + 7. Let Ly be a line
through r that misses p and po (or if r = p or pg, need something else). Then ¢ = Ly/L,
belongs to L(p+ po) (note that we also need to consider the case p = py and the case p # po
but r = p or r = py). (Note also that here, since we are in P?, we are identifying a line with
its defining equation, ie. writing the line L as L =0)

Claim: 3f, € L(¢py) (¢ > 2) such that divy, f; = fp + 0.

If so, we are done since f; € L(p+ €py) and fr ¢ L(p+ (£ — 1)py).
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Need to find # € L(2pyg) and y € L(3py). If so, we are done, since z¢ € L(2dp,) and
¥y € L((2d + 1)py) with poles of the correct order at py.

For L(2pg), let M; = tangent line to X at pg. Then divM; = 2py + s. Choose a line
My which goes through s with order 1. Then M, /M; cancels the pole 1/M; at s. divMy =

S+P+4, .47 S Po-
For L(3py), let M3 = line through p and po; divMs = p + py + t for some t. Then take

M, = line of multiplicity one through ¢ missing pg, then

My My
M, M

has the right order of pole. ([l

14. THE GROUP LAW

If (%) degD = ¢(D) for all D > 0 on a smooth projective curve X then X is isomorphic

to a smooth plane cubic.

Proof. Suppose (x) holds. Fix p € X.
L(0) C L(p) C L(2p) C L(3p) C -~

Let © € L(2p) \ L(p). Let y € L(3p) \ L(2p). Define ¢ : X --» P? via ¢ — (1 : z(q) :
y(q)). This is a rational mapping. It is defined everywhere since X is a curve, but in this

representation it is not defined at ¢ = p (in fact p+— (0:0: 1)). So ¢ : X — P? regular.

L(p)1
L(2p)1,x
L(3p)1,z,y
L(4p)1, z,y, x*
L(5p)1,z,y, 2% xy
L(6p)1, z,y, 2% vy, y*, o°

Since dim L(6p) = 6 but we have seven elements, there is a linear dependence. So 3f(z,y) =

0 on X and degf < 3.
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¥ X — C C P?, where C' = homogenisation of zero set of f. This is surjective because
it is not constant. The curve C is either (a) a smooth cubic, (b) a singular cubic or (c)
a conic. A singular cubic is birational to P! (by passing lines through the singular point
and projecting down) and so is a conic. Suppose we can prove degyp = 1. Then X and
C are birational. Then in cases (b) and (c), X = P! because it is birational to P'. But
deg(D) = ¢(D) — 1 for a rational curve, so this is impossible. So we are in case (a), and X =
smooth plane cubic. We must therefore show that degy = 1.

k(z),k(y) C k(C) C k(X). Since X is a curve, x and y are regular maps X — P!. Now,
[k(X) : k(x)] = degr as a map, which equals deg(div,z) (since X and P! are both smooth)
which is 2. And [k(X) : k(y)] = deg(diveey) = 3. This forces [k(X) : k(C)] to divide 2 and
3,50 [k(X) : k(C)] =1=degy. So X =C. O

14.1. The group law. Let X = smooth plane cubic. Let o € X be an inflexion point.
Assume chark # 2,3. Get Weierstrass form

v =23 +axr+b

(Note to self: not sure how to prove this using the fact that o is an inflexzion point. Weierstrass

form also obtainable by messy algebra.) Real part of X looks like:

~

\
!

/
i

div(z) = 3o. If L is aline then if divL = p+q¢+r, then in the group law on X, (p—o0)+(q¢—o0) =
pdqg—oforpdqge X. Then p® g r = o (three collinear points sum to zero). Denote the
inverse in the group law by Sp; p® (6p) =0 <= (p—0)+ (6p—0) ~ 0, 50 p+ (Ep) ~ 20.

Geometrically if ¢ = ©p then line poN X = ¢+ p + o.
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In ® = 23 + ax + b case, what is ©(x,y)?

S(p@q)

s

r=pdq

Answer: &(z,y) = (z, —y).
Vertical lines = lines passing through o = point at oco.
Inverse map ¢ : X — X, p — ©Sp is a regular mapping.
Multiplication map ¢ : X X X — X, (p,q) — p @ ¢q. In coordinates, (z1,y1) X (22,y2) —
Y2=y1

(x3,y3). Line through (z1,y1) and (z2,y2) has m = y— 1y = m(x — xp). Subs.

x2—x1’

y = m(x — x1) + y in cubic gives cubic equation in z. But z1, x5 are known to be solutions.
Then the third solution can be computed from the 22 term. x5 = m? — x; — x5 is the third

root, and y3 = m(x3 — x1) + y;. This is a rational map.
Theorem. ¢ : X X X — X is a reqular map.

Example. Translation. For each ¢ € X, define t, : X — X by p — p @ ¢. This is a regular

map because addition is. It is also an iso. because the inverse is tg,.

Proposition. di, ) @ Tipg.xxx — Tpaqx equals dt, ® dt,, where Ty, 4) xxx 15 identified

with T, x ® Ty x. In particular, di,q) 1s surjective.

15. SOLUTIONS AND PARTIAL SOLUTIONS TO SELECTED EXERCISES

(1) Page 174, problem 3. Prove that the number of singular points of an irreducible

plane curve of degree n is < (”;1)

n—1

) ) + 1 singular points.

Let C' be a plane curve of degree n. Suppose C' has (

It is a fact that (";2) — 1 points uniquely determine a plane curve of degree n (by

considering the span of the monomials of degree n). Choose a plane curve X that
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intersects C' in (";1) singular points and (";2) —1- ((";1) + 1) = 3n— 2 nonsingular
points (which we are free to choose). We can find an X that does this. We can use
Bézout to get C'- X = n? Each singular point gives intersection with multiplicity
>2,50C-X>2((",")+1)+Bn—2)=n>+2.

Here we have also used Problem 2 (the normalisation) to get that C' - X is well-

defined for a singular C, and that each singular point has multiplicity > 2.

Page 174, problem 4. Hessian

ch ny sz
H=\F,y Fy F,.
sz Fzy Fzz

degH = 3n—2if degX =n, so H- X = 3n(n —2). Still need to know that the order
of vanishing of H at x = (multiplicity of tgt line at ) —2. To prove this, try using
the Taylor series (and take z = (0,0)).
Pencil of conics. X = P'. Idea: over each point of P! is a conic, such that:

e 7 1(00) is nonsingular.

e Over A} = P!\ {oo}, each fibre is the variety determined by Zijzo a;j(t)z;x;.

e X is nonsingular.

eg. tr? + (y*> — 2?) is a nonexample - 7 '(00) is a double line, so singular. An

example is the subset of P!, x P2 determined by t(z?* + y? + 2%) + sxy. Each zero of

ryz

Qoo Adp1 Qo2

det | ayg a1 an

Q20 A21 A22

gives ¢ such that 7='(¢) is singular (in the scheme-theoretic sense), ie. a singular
conic or a double line, since the rank of the coefficient matrix determines whether

the conic is singular or not.

rank 3 e T

rank 2 2 + 9 line pair

rank 1 x? double line.
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The group CI(X) is generated by the following. First, [F] for F' some nonsingular
fibre. Next, each singular fibre splits into L; U Ls; pick one of them to get the set
{[L1] : L1 4+ Ly is a singular fibre}. Tsen’s theorem implies that there is a section of
7 (see Shafarevich for proof). Let o : P! — X be a section and take the class [S]
where S = o(P!).

Since X — P!, any two fibres are linearly equivalent (fibre = 7~ (pt.).

Claim 2: the given generators are not linearly equivalent.

Suppose I have D = m[F| + n[S] + >_ 4;[L;] = 0 € CI(X) where the sum is over
the different singular fibres. Choose F” # F nonsingular. Look at i*(D) on F’. Since
FNF' =@, *[F| =0. Similarly, *[L;] = 0. Then i*n[S] =np, p € F', F'NS = {p},
son = 0.

Then look at j : other line L} — X. Look at j7*(D) and get ¢; = 0 for all i. Use
that m[F] = 0 implies m = 0 because X is projective; if m # 0 then we can assume
m > 0 and there can’t be any nonzero functions which are regular and vanish along
F, since any regular function is a constant.

We still need to show that any prime divisor is linearly equivalent to a sum of the

given ones. See Shafarevich, pp. 73 and 164 for this example worked out in detail.

16. THEOREM OF THE SQUARE

Recall some facts about ramification and the Frobenius map.

(1) If f: X — Y regular, chark = 0, X smooth.
(a) Fix ¢ € Y. If df, : T,x — T,y is surjective for all p € f~!(q) then f~(q) is
smooth.
(b) If Y is a smooth curve and df, is surjective for all p € f~'(q) then f*(q) =
> (components of f~!q), ie. each component appears with multiplicity one.
(2) Suppose f: X — Y is finite, X, Y irred, Y normal (<= smooth).
(a) Theorem. #f!(q) < deg(f)VgeY.
(b) f is called unramified over q if #f *(q) = degf.
(¢) fk(X) — Ek(Y) is separable then {g € Y : f is unramified over ¢} is a nonempty

open set in Y (& therefore dense).
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Note: if f: X — Y is a morphism of smooth curves then f*(q) = >_ -1, for
unramified q.
(3) (Frobenius)
Let X = affine variety defined over F, (ie. equations of generators of Ix have
coefficients in F,, but X is really in A" = (F,)™.

Frobenius
p: X —=X
(ay,az,...,a,) — (af,ab, ... ab)

(since if f(ay,...,a,) =0then f(al,...,a?) =0, a; € F,).
¢ : X — X is a regular finite map.

This holds also if X is projective or quasiprojective.
Two facts:

(1) If X is a curve then degy = p.
(2) If f: X — Y is a map of curves, not separable, and X,Y defined over F,, then 3 a
regular map g : X — X such that f = go .

16.1. Theorem of the square. X = smooth plane cubic. 0 € X as before (pt. at oo and

inflexion point).
A={(p,p):peX}CXxX
Y={(p,op):peX}
Theorem. On X x X,

A+Y~20ox X+ X xo)

Proof. Idea is to find a g € k(X x X)* such that divy(g) = X+ A and dive(g) = 2(0 x X +
X X o).

X C P2. On affine part U C X, y* = 2% + ax + b.

UxUcCXxX,UxUc A" Coordinates (z1,72), (y1,y2) with

yi=a}+azr; +b (1)

y§:$§’+ax2+b (2)
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Let ¢ = 21 — 29 € k(X x X)*. Then g is regular on U x U so can only have poles on
X XxX\UxU=Xxo0Uox X. In fact, dive(g) = 2(0o x X + X X 0). Set-theoretically,
+o(g) = aA + bX. Show coefficients are 1. From (1) and (2), get (1 — y2)(v1 + ¥2) =
(r1 — 29) (22 + 1129 + 22+ a). Then x; — x5 is local equation of both A and 3. For example,

local equation of A in open set where y; +yo # 0, y1 —y2 = (21 — @)ﬁ, so local equation

of A 'is x1 — x5. In this way, we get that coefficients of A and ¥ are 1. OJ

16.2. Regular maps X — X. If g€ X, t,: X — X defined by p—p@q. N : X - X
is any regular map, then if \'(0) = ¢ then ¢g, o X' is also a regular map and maps o — o.

Form a group G.

G={\: X — X : Xis regular and \(0) = o}

with (A1 + Ao)(z) = Ai(z) @ Ae(z) and (—A)(z) = ©A(x). This is a well-defined group
structure on G because & : X x X — X and © : X — X are regular maps. G is an abelian

group with identity the constant map.
Definition. For A € G, let

0 A constant map
n(A) =
deg\ otherwise

Theorem. For all A, € G,
n(A+ p) +n(A = p) =2(n(A) +n(w).

17. HASSE-WEIL ESTIMATES

X = smooth plane projective cubic curve; o = inflexion point and point at co. G = {\ :
X — X : A regular map, A(0) = o}. G is an abelian group under pointwise addition. For
A€ G,

0 A=0
n(\) =

degA otherwise
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17.1. Scalar products on a group G. If \,u € G, (A, ) € Q such that (A, u) = (u, A)
and (A; + Ao, 1) = (A1, 1) + (Ao, ). How to specify such a scalar product? Suppose we have
a Q-valued function n(A) € Q, n(A) > 0, n(o) = 0. We want a scalar product such the
n(A) = (A, A). Need:

n(A+ p) =n(u) +2(u, A) +n(A)

n(p—A) =n(p) = 2(p, A) +n(A)
so n(p+ A) +n(p— ) = 2(n(u) +n(N)). Simple fact: if n(-) satisfies this equation, then
(X + 1) = n(X) —n(u)) is a scalar product on G.
Theorem. For all \,u € G,

B+ ) + 1 — 1) = 2000 + ().

Corollary. There exists a scalar product on G such that (A, ) = n(A).

Proof. Fix A\, u. Define f : X — X x X viap — (A(p), u(p)). We have four maps X x X — X:

V(g —p&q
¢:(p,q) —poyq
m:(p,g) —p
T (p,q) — ¢

Theorem of the square says on X X X, A+ ¥ ~ 2(ox X + X x 0) = 2(7}(0) +75(0)). Apply
fr
FA+ Y~ 2fm(0) + frmy(0) (%)

Fmi(0) = (7Y (0) = X*(0) I A £ 0,

frm3(0) = (maf)*(0) = p*(0) if p # 0.

(We don’t need to worry about the case A or u = 0 because then it becomes n(u)+n(—u) =
2n(p) so n(p) = n(—p). But © is an automorphism = degree 1, and so this is true.)

[*A=fre*(0) = (pf)(0) = (A=) (o) if A= #0.

3= frr(o) = (Wf) (o) = (A + p)"(0) it A4 # 0.

So suppose A — p, A+ # 0. Apply deg(-) to (x). This gives the result.
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Other cases: assume eg. A+ p =0, ie. A = —p. Need to prove n(2A) = 2(n(A) + n(—\)).
So n(2X) = 4n(A).
22X S X 32X
n(2A) = deg(2))*(0) = n(A)n(2:). Need to compute n(2-) = deg(2-)*(0). But (2:)*(0) =
oU (X N{y =0}) since 2z = 0 iff x = Sz iff y—coord of x = —(y—coord of x).

/

Points x with 2z=0
OJ

17.2. Hasse-Weil estimate. X C P? smooth plane cubic such that equation of X has
coefficients in IF,.
Let ¢ : X — X send (z,y, z) to (zP,y?, 2P), the Frobenius. We know that n(¢) = p. Let
X(F,) ={(zr,y,2) € X : x,y,z € Fp}. Let N = #X(F,). What is n(1 — ¢)?
l—p: X=X
a— a0 p(a).

Note o = p(a) if and only if o € X(F,). So (1 — ) (o) = X (F,).

Claim.

acX(Fp)

Consider (1—¢) (o) and (1—¢) (o) = {11,..., 7w} If BE¢p(3) = athen (1—p) (a) =
{B+7,...,8+7n}. If 1 —pis separable then 1 — ¢ is unramified over some «, and therefore
deg(l — ¢) = N. Recall that 1 — ¢ not separable =— 1—p =pop = 1= p+ up,
i X — X some regular map. So 1 = (1 + u) o ¢ where “+ 7 = sum in group law. So

1 = degl = deg(1 + p)degp = deg(1 + u)p,

a contradiction. So 1 — ¢ is separable and we obtain the claim.
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The theorem says:

n(l+¢) +n(l —¢) =2(n(l) + n(e))
n(l+¢)+ N =2(1+p)
n(l+¢)=2+2p— N.

Consider A : X — X defined by

A
a—ad--Dadp(a)d- - dpla)

a b

ie. A\=a+byp, a,b € Z, “+” in group law. Then
n(A) =n(a+bp) = (a+bp,a+bp) >0  Va,beZ.

Since (a + by, a + bp) = a® + 2ab(1, @) + b?, this holds if and only if <(11¢) (1’1”)) is positive
semidefinite <= p > (1,¢)%. So we get |(1,¢)| < /p.

18. DIFFERENTIAL FORMS

X = smooth plane cubic in P?, chark # 2,3 (chark < c0).

(1) Have scalar product (—, —) : GXxG — Q where G = {\ : X — X regular such that \(o) =
o}, such that (A, A) = n(\) = deg(A) for A non-constant.

(2) Had: Frobenius map ¢ : X — X
degyp = p.
deg(l —¢)*(0) = N = #X(Fy).

(3) used: A =a+ by, a,b € Z,ie. A(p) = ap ® bp(p) € X.
Get (1,9)? <p, so |(L,¢)| < \/p.

Put it all together:
N=n(l-¢)=1-2(1,¢) + p. Therefore, N—p—1= —2(1,¢). So

[N —p—1]=2[(1,9)] <2Vp.

Example. chark = 7.
IN -8/ <2/7=523.... S0 |N -8 <5 So N € {3,4,...,13}.

y?=a34+ar+0b, abelF,.
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49 curves possible, 42 smooth ones. Computer calculation:

N | # of curves
3 1
4 4
5 3
6 6
7 4
8 6
9 4

10 6

11 3

12 4

13 1

y? = 23 + 3 has 13.

What about chark = 07 The Mordell-Weil theorem says that X (Q) is a f.g. abelian group.
It is not known whether X (Q) has bounded rank. Current record is about 29.

18.1. Differential forms. Situation: let X be a variety and p € X. Ring of regular func-
tions at p is Oy, D mx, = those which vanish at p. Tx, = (mLp/m?X,p)* tangent space to
X at p. Given f € Ox,, define d,f € T, = mx,/ mggp, the linear part of the Taylor series
of f at p. Or take (f — f(p)) + m% ,; the same thing.

Want to do now: study how d,f varies with p.

Definition. Let
®[X] = {functions ¢ : X — U,exTx , such that ¢(p) € T, for all p}
(set of sections of UpexTx,, — X ).
Then ®[X] is an abelian group under (¢p+1)(p) = ¢(p)+1(p), and P[X] is a k[ X ]|-module.

Definition. Given f € k[X], define df € ®[X]| via df(p) = d,f € Tx .
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Definition. ¢ € ®[X] is called a regqular differential form on X if for every p € X, there

exists an open neighbourhood U of p such that |y is in the k[U]-submodule of ®[U] generated
by the image of k[U] — ®[U], f — df.

Unravelling this, on U,
plo = Zfidgiv fi» gi € k[UJ.
i=1
Definition. Let Q[X| = k[X]|-module consisting of reqular differential forms on X.

(Aside: if U € X open, define Qx(U) = k[U]-submodule consisting of all regular differ-
ential forms on U — (y is a sheaf. If V C U C X open,

Qx(U) — Qx(V)
@~ ¢lv.)
18.2. Rules involving df. f,g € k[X].
d(f +9) = df +dg
d(fg) = fdg + gdf

Chainrule: if F = F(Ty,...,Ty) € k[Th, ..., Ty andif fi, ..., f; € E[X] then F(fi,..., fn) €
k[X] and

" OF
dF(fl,...,fm): ﬁ(fl,...,fm)dfi.
i=1 ¢

First example: X = A" k[X] = k[xy,...,2,). dzy,...,dz, € Q[X]|. For each p,
dpy, ..., dpty, € my/m? and form a basis of this vector space. So
O[X]={p= Z idz; s.t. the ¢; are any functions X — k}.

i=1

Suppose ¢ € Q[X]. Let p € A™ and U C A" be the open set U 3 p from the definition of ¢.

Then |y =Y _._, fidg; where f;, g; € k[U]. Then dg; = %dxj. So get ply = > i hidx;,
J
h; regular at p (combination of f; and %). This implies ;| = h; (since the ¢; are uniquely
J

determined by ¢). So the ¢; are regular on all of X. So ¢; € k[X]. So ¢ = >0 | @idu;.

Therefore,
QA" = @ klzy, . . zn]das,
i=1
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a free k[xq, ..., z,]-module of rank n.
Next time:
o P! (try it first on your own), Q[P!].
e 23+ 23 + 23 = 0. Find Q[X].

19. DIFFERENTIAL FORMS II

Homework problems:

p-188 # 2.4.5 plus 9 if interested.

pp. 204-205 # 6,7,9. and compute Q[X]|, X = V(23 +23+23). (Can you do x§ + a7 +257)
X variety, ®[X] = {¢: X — UpexTx, : ¢(p) € Tx,}-

Q[X] = {p € ¢[X] s.t. locally (on U), | = Zfidgiafiagi € k[U]}.

i=1

Then ¢(p) = > fi(p)dpgi € Tx - Showed Q[A"] = &, k[A"]dx;.

Example. X = IP’ylﬁy. Two open sets Uy : © # 0, t = y/x affine coordinate on Uy. Uy : y # 0,
s = x/y affine coordinate on U;.

Suppose ¢ € Q[P!], a = ¢|y, = p(t)dt, p a polynomial in k[t]. B = ¢|ly, = q(s)ds,
q(s) € k[s].

Need ¢|y,nu, to be well-defined, ie. a|y,nv, = Bluonu,- So p(t)dt = q(s)ds, k[Uy N U] =
kls, 1], t = 1.

ds = d(}) = —zdt, so p(t)dt = —55q(3)dt. This is true iff p(t) = —5¢(3) on UyNU;. This
can’t happen because if ¢*(t) := t4°89g(1) then t4°8+2p(t) = —q*(t), ¢*(0) # 0. But this is
impossible. So p(t) = ¢*(t) = 0 and Q[P!] = 0.

1
t
1

t

Example. Let X C P? 23423 +23 = 0, chark # 3. We will find a nonzero element of Q[X].
Let Uj; = X\ (V(z;) UV (x;)). Then X = Uy UUp UUs2. On Uy, let . = 21 /20, y = 22/
and consider ¢ = dy/x?. On Uy, let u = x9/x1, v = x9/71 and consider ¥ = dv/u?. On Ups,
let s = wo/wy, t = 21 /79 and consider y = dt/s?. Need to check that on Uy, these all agree.

k[Un| = k[z,y]/(z3+y*>+1 = 0). Note that, in Q[Uy |, d(23+y*+1) = 0, so 3zx?dz+3y*dy =
0. So dx = —z—zdy. On Uy, v = 1/z, u = y/x and dv/u?® = (2?/y?)d(1/x) = z—j - dr =

;—%da: = 1,—12dy. Similarly, dt/s* is equal to the other two on the overlap. So Q[X] # 0.
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Two simple remarks:

(1) Suppose z1,...,z, € k[X] are such that d,x1,...,dyz, form a basis for 1%, for all
p € X. Then if ¢ € ®[X]| or Q[X], then 3 unique functions oy, ..., a, : X — k such
that ¢ = aydzy + - - - + a,dx,.

(2) If @ : X — k is a function such that 3 open cover {U;} of X with o|y, € k[U;] for

every 7, then « is regular.

Theorem. Let p € X be a smooth point. Then 3 an open affine neighbourhood U of p such
that QU] is a free k[U]-module of rank dim, X.

Proof. WLOG X irred (since only one component passes through a smooth point) and affine.
X C AN, Ix = (Fl,...,Fm), n = dlme

N

OF;

=1

key: consider (gf; (p)) has rank N—n. Rename the z’s and F’s such that J = det (gf;) =1, Non
has J(p) # 0.

Let U= X\ V(J). On U, dxy,...,dr, generate T  for all ¢ € U. Therefore, they are
a basis. If p € Q[U|, ¢ = > a;dz;. Show «; € k[U]. We know 3 an open cover {V;} of U
such that |y, has “nice form”. So if V' = Vj then ¢|v = Y~ fidg; where f;, g; € k[V]. But
dg; = Y0, Yeda; = 3" hydxj, hy € k[V] (check). This implies o; € k[V]. O

j:1 ij

20. KAHLER DIFFERENTIALS AND HIGHER FORMS

20.1. Differential forms. X = smooth variety. Q[X] C ®[X].

e Given p € X smooth, there exists open neighbourhood X D U 3 p such that Q[U] = free
k[U]-module of rank n = dim, X. To show this, find 24, ..., z, such that on U, dyz1, ..., dyz,
form a basis.

e algebraic definition (Kéhler differentials).

e p-forms.

e rational forms.

20.2. Kahler differentials. Let X be affine, A = k[X], Q = Q[X], which is an f.g. A-

module.
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Definition. Let (4, be the following A-module.
Quap=T/1
where T = free A—module generated by df for all f € A and I is the submodule generated by

d(f +g)=df +dg
d(fg) = fdg + gdf

dla) =0
forall f,g € A and all a € k.

Note that Q4 is generated by {dz1,...,dx,} if A= k[zy,...,2,]/J. Note there exists a
homomorphism of A-modules Q4 —  defined by df — (p — d,f).

Proposition. « is surjective.

Proof. Let w € Q. For p € X, let U, = affine open nbd of p such that w|y, = >":%; fipdgip,
with fip, gip € k[Up] C k(X). By clearing denominators, B,w|y, = Zf;s(p) r; pdh;, where
Bp, Tip, hip € A. Choose points p1,...,p, € X such that U, U---UU,, = X. We know 3,
does not vanish on U,. Consider the ideal (8,,,...,5,,) C A. The Nullstellensatz implies
(Bpys- -+, Bp,) = A, so Iy; € A such that Zle YiBp; = 1. Therefore,

¢ s(py)

W=« Z Z VjTip; Aip,

=1 i=1

Note that if w € Q[X] and w(p) = 0 for all p € U C X dense open, then w = 0.

Proposition. If X is smooth and affine and irreducible then o : Qa, — Q[X] is an iso-

morphism.

Proof. A worthwhile exercise. See proof of previous prop. O
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20.3. Differential r—forms. Let
PX] ={p: X — Upex N Tk, : 0(p) € N'T% Vp}.

®°[X] = ring of k—valued functions.

OlX] = o[X].
Recall:
If V is a vector space with basis ey, ..., e, then A"V has basis e;, A---ANe;, i1 < - <ip.

Let e; ANej = —ej Ae;. Can define ¢ A ¢ for ¢ € O"[X], v € ®°[X]|. Each ®"[X] is a
k[X]-module.

Definition. Q"[X] = set of reqular r—forms on X. w is a reqular r—form if for allp € X, 3
open U > p with w|y € k[U]-module generated by dfy A --- A df, with f; € k[U].

Theorem. Ifp € X is a smooth point and n = dim, X then 3 open neighbourhood U of p
such that QU'[U] is a free k{U]-module of rank (7).

Proof. Identical to r = 1 case. Q"[U] = A"Q[U]. O

20.4. Rational differential forms. Let X = irreducible smooth quasiprojective variety

and w € Q"[X].
Lemma. {p € X :w(p) =0¢€ N'T% } is closed.

Proof. WLOG X affine, smooth such that w = Zi1<,_,<ir Giy...indfi, N -+ A df;. such that
dfy,...,df, form a basis of T%  for all p € X. Then V(w) = V(gi,,..,
X. U

i Jiz<-<i, 18 closed in

21. RATIONAL DIFFERENTIAL FORMS

X = irred smooth quasiprojective variety.

w e Q[X].

Last time: V(w) = {p € X : w(p) € N"Tx, is zero} is a closed subset of X. In particular,
if we Q[X] and w|y = 0 then w = 0.

Define Q7 (X)) to be the set of equivalence classes of pairs (U, w) where w € Q"[U] and where

(Uy,wy) ~ (U, ws) iff 3V C U; U Uy open and nonempty, dense, such that wq|y = ws|y. An
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equivalence class will be denoted w = {(U,wy )} or often {(U,w)} and called a rational r—form
on X.

Given w € Q" (X), if 3(U,wy) € w then we call w regular on U. The domain of regularity
of w is defined to be U, )ewlU = Us.

Note: if X and Y are birational then Q"(X) = Q"(Y) as k(X ) = k(Y )—vector spaces. To
see this, take open U C X,V C Y with U = V. Then Q"(U) = Q" (V) as k[U]-modules.

Theorem. Q"(X) is a vector space over k(X) of dimension (") where n = dim X

Proof. Choose U C X open and nonempty such that
(1) Q"[U] is a free k[U]-module of rank ().
(2) Juy,...,u, € k[U] such that duy,...,du, is a basis of Q'[U] over k[U] (so {du;, A
-+ Adu;, } is a basis of Q"[U]).

Let w € Q"(X). w is regular on U’ C U. Therefore w = > giiyoi,dui, A --+ A dug, for
Givigi, € K[U'] C k(X). Linear independence of du;, A --- A du;, over k(X) is easy. O

Theorem. If uy,...,u, is a separable transcendence basis of k(X) over k then the forms

du;, A -+ ANdu;, form a basis for (X)) as a k(X)-vector space.

Recall: uq,...,u, is a separable transcendence basis of L over K if
® uy,...,u, € L are algebraically independent over k.
o k(uy,us,...,u,) C L is a finite separable extension. (Separable means that if a € L

7777777

Example. X = curve C A? with equation y* — f(x) = 0. Then X — Al (z,y) — z. And

k(z) = k(AY) C y’z(j}@) = k(X). This is separable if chark # 2, since -L(T? — f(z)) # 0.

Here Q(X) = k(X)dx (cf. 2ydy = f'(x)dx, so dy = %‘;)dm if chark # 2).

Recall from Chapter I of Shafarevich: every irreducible variety is birational to a hypersurface.

E(X)=Fk(zy,...,zn-10)[xn)/f(xn; 21, ... T01)

The proof also shows that % # 0.
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Proof. (of theorem.) WLOG X C AV. Let v € k(X). Then the exists F(v,us,...,u,) =
0,F € k[T),...,T,], F separable in v. For i = 1,.
Fi(zi,uy, ... u,) =0.

..,n, we can find such F; such that

Therefore,
OF; — OF;
= —'dux; “*du.
0 T, x +jzl T, u;j
and g—% # 0, so dv; € ), k(X)du;. Therefore, duy, ..., du, generate Q'(X) over k(X) and

so dug, A--- Adu;, generate "(X) over k(X). Correct dimension = they are a basis. [

21.1. Behaviour under regular and rational maps. Let o : X — Y be a regular map

of varieties. Then ¢ induces maps
Pt Y] — O[X]
Y] — O"[X]
QY] — Q'[X]

(check), all called ¢*. Basic idea: ¢*(fdg) = (¢*f)d(¢*g) and ¢*(fdgi A --- A dg,) =
(" f)d(e"gr) A= N d(e™gy).

Example. A' — A2 ¢ — (£2,83). ¢* : QA?] — QYA']. Compute: p*(dzr) = d(p*x) =

xy?

d(t?) = 2tdt and p*(dy) = 3t%dt.

If ¢ : X --» Y is dominant and rational and X, Y are irreducible then ¢* : Q"(Y) —
O (X), where a (U,w) € Q7(Y) is mapped to (p~'U, p*w).

Theorem. If X, Y are smooth and k(X) has a separable transcendence basis over k(Y') then

" Q(Y) — Q(X) is an inclusion for all r.

Cool Theorem. Suppose ¢ : X --» Y is dominant and X, Y smooth and irreducible, Y

projective. Then

QY] — Q[X].

Corollary. If X, Y are birational and smooth and projective then Q"[X] = Q"[Y] as k—vector

Spaces.
40



22. SOLUTIONS TO SELECTED EXERCISES

(1) Cubics C;, Cy in P2, C; N Cy = {p1,p2,...,p9}. Let D be any cubic through
{p1,p2,...,ps}. The aim is to show that D also passes through py.

Let iy : C; < P? be the embedding. Then i%(Cy) = 320, p; and i (D) = 325, pitq
for some ¢. Since Cy — D is a principal divisor on P? (divide the equation of Cy by
equation of D), we get 0 = i{(Cy — D) = pg — q. If pg # ¢, this implies that C' is
rational. So py = ¢.

(2) Prove that there are four tangent lines to a plane cubic X that pass through a given
point p (regarding = € T'x , only if x is an inflexion point).

Consider m~torsion points, ie. z such that x @ x @ --- ® 2 = 0. There are exactly

g

m? of these (proved earlier in chapter). We have ¢ @;n: E©p iff the tangent line to X
at q passes through p. There exist x,y, z,0such that t®xr =y®dy = 2P 2z = 0. The
equations in the book for & etc. give that there exists a solution ¢ to ¢ & ¢ = Sp.
The other solutions are then given by ¢ ® x,q ® y and g & z.

Alternatively: X 2 X, g — ©(q @ q) has n(\) = 4 so degree 4.

(3) The exercise is to prove that there is a conic tangent to the cubic of the previous
problem at z which passes through the points ¢ with x € T ,.

One solution is to take F to be the equation of the cubic in P?, and G to be the
so-called polar curve of F, defined by G = oF, + BF, + vF, where (a: f:7) = x.
Then G(x) = 0 by Euler’s formula, G(q) = 0 for each of the given ¢ by definition of
these points being on the tangent lines, and G is tangent to X at x (these can all be
checked by repeatedly applying Euler’s identity for a homogeneous polynomial).

There may be another argument to solve this problem using Bézout’s theorem.

(4) No.6. The exercise is to show that Q"[P"] = 0.
Let P = U7_,U; and t/ = x;/x;. Then if w € Q"[P"], then wly, = Sgldtl A

tidet —tt dtt

Adt. . In UiNU;, tfk = t; /t’. Therefore, dtj- = Jfﬂ—)k] Sow=>¢’. tl)% (t’)"”dt] A
: -/\dtfr —(-++). This equals 3 -2 o dt] A~ /\dtj for some polynomials g int), ..., tJ.
So gt (t,...,t1) = (tl)wg(zg, S %). Writing in terms of homogenised § yields that

all the g/, are zero.
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Could be made easier by using just two open sets Uy and U;, but would be the
same calculation.

(5) This exercise shows that for a singular variety, Kahler differentials and Q[X] may not
be the same.

Let A = k[X] = klx,y]/(y* — 2®) = k[z] & k[z]y as a k[z]-module. Assuming that
Qa4 = (Adx + Ady) JA(2ydy — 3z*dx), we claim that 3ydx —2zdy # 0 in Q4. Suppose
it is. Then 3ydr — 2xdy = a(2ydy — 3z%dx) for some a € A. Therefore, 3y = —3az?,
—2x = 2ay in A. But y # 0 in A/(z?), so this is impossible. However, 3ydz — 2xdy €
Q[X] is zero, because y(3ydx — 2zdy) = 3y*dx — 2zydy = 3y*dx — 3x3dxr = 0, so
3ydr — 2xdy is the zero function on X \ V(y), while if y = 0 then x = 0 and so
3ydx — 2xdy = 0.

We need to know also that if A = k[zy,za,...,2,]/(f1,..., f) then Q4 = (Adx; +
-+ Adx,)/A(df1, . .., df.). This should be provable using the universal property of
Q4.

23. THE CANONICAL CLASS

@ : X --»Y dominant, X, Y smooth irred.

Theorem. If k(X) has a separable transcendence basis over k(Y') then ¢* : Q"(Y) — Q"(X)

is an inclusion ¥r (see book for definition of ¢*).

Proof. Hypothesis: there exist vy, ..., vs algebraically independent over k(Y) C k(X) (via
©*) such that k(Y)(vy,...,vs) C k(X) is finite and separable. Let uy,...,u; be a separable
transcendence basis for k(Y) over k. Let w € Q"(Y). Then w = > ¢,
du;,. Then p*w = > ¢*g;

77777 deuil VANEIERRVAN

o d(@*uy ) A Nd(p*u;.). Since the ¢*u; = u; are part of a
i, = 0 for all 41,...,4,. This holds if

-----

~~~~~

and only if g;, = 0 since the pullback of functions under ¢ is 1 — 1 (¢ is dominant). This

,,,,, ir

in turn holds if and only if w = 0. O

Theorem. Suppose ¢ : X — Y is dominant rational map, X, Y smooth and irreducible, Y

projective. Then ¢*(Q"[Y]) C Q"[X].
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Proof. There exists Z C X closed with codimy Z > 2 (uses projectivity of ¥ and smooth-
ness) such that ¢ : X \ Z — Y is regular. Suppose w € Q'[Y]. There exists an open
cover {U} of X such that for each U, we may write o*w =Y g, ... i,du;; A -+ A du; where
Gir...ir. € k(X)) are regular on U \ Z and du;,, ..., du;, are a basis of Q[U] over k[U] (so that
i, is regular on U \ (U N Z), and

.....

.....

this last part of the argument referred to as Hartog’s Theorem.) 0

Corollary. If X, Y are smooth projective varieties and X, Y are birational then Q"[X] =
QY.

Definition. If X is a smooth projective curve, define the genus g = g(X) = dim;, Q'[X],
a.k.a. WO(QL) = h'(Ox) = A

We know g(P') = 0.

23.1. Canonical class. Let X = smooth of dimension n. Consider "[X] and Q"(X).
What data is needed to give an element w € Q"(X), w # 07 What we need: there exists
an open cover {U;} and, on U;, functions ugi),...,ug) € kU], ¢ € k(X)* such that
w = g(i)dugi) Ao Adul) on U, (ie. this (U;,w) is in the class w). On U; N U;, g¥) =
gJ (%) where J (Zg;—um) is the Jacobian, which is regular and nonzero on

a7

~~~~~~

U; NU;. Therefore, {(U;, gV)} is a Cartier divisor on X. Called div(w). Note:

(1) div(fw) = div(f) + div(w), f € k(X)*.
(2) div(w) > 0 <= each g is regular on U; <= w € Q"[X].
(3) Q"(X) is a one-dimensional vector space over k(X). If w; € Q"(X) \ {0} then

)
f € k(X)* such that wy = fw. Therefore, div(w;) ~ div(w).

L

Definition. Kx € ClI(X) is the class [div(w)] for any w € Q"(X). Called the canonical
class of X.

Note: Q"[X]| = L(div(w)) = L(Kx). Therefore, for X smooth projective curve, g(X) =

dimQ!'[X] < oo since dim L(Kx) < co.

Examples.
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[ ] X = ]Pm7 Kx.
e X =V(F) CP" asmooth hypersurface. Compute K.
e X hyperelliptic curve.

e Invariant forms under a group.

X =P . Find Kx. On Uy, coordinates t; = x;/xo, 1 < i < n. Can take anything we

TOLL...Ty

want, so take w = dtyA- - -Adt,,. Then div(w)|y, = 0. So div(w) = £-V (zo) for some ¢ € Z. On
Ui, t1 = 1/ug, to = ug/uy, ..., t, = u,/u; where uy = xo/x1,us = x2/71, ..., U, = T, /1 are

coordinates on Uy. Sow = d(;-) Ad(32) A---Ad(3>). Replacing d(*) by (u;du —uydug) /u?,

1 i
ul 1
this becomes
—1

n+1
Uy

duy Adug A -+ - A duy,.

Therefore, div(w)|y, = —(n + 1)V (xg). So overall, div(w) = —(n + 1)V (x¢), where V(zo) is

the hyperplane section.

24. HYPERSURFACES

Let X C P"*1 X = V(F) smooth hypersurface of degree m (m = degf). Let’s compute
(1) Kx.
(2) Q"[X] = L(Kx).

Plan: to mimic the P"* case.

Let U = Uy = P"™\V (zy). X is defined by the inhomogeneous equation G(yi, ..., Ynr1) =
0, y; =x;/xg,7=1,2,...,n+ 1. Define U; = X NU, \ V(0G/0y;) for i =1,...,n+ 1. Note
that the U; cover XNUj (by smoothness) and Q"[U;] is a free k[U;]-module of rank 1 generated
by dy; A--- A @ A« ANdynyr (I believe this follows from the fact that the yy, with k # i are
local coordinates on U;; dy; can be written as a sum of the others because 0G /Qy; # 0 and
since the cotangent space at each point is n—dimensional, we get that dy, . .. ,gy\i, coy dYpa

must be a basis for this space.) Take
(=1’

i= o —dy A Adys A A dyn

Claim. On U; NUj, w; = wj. If so, then w = {(w;, U;)} defines an element of Q"[U N X].
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Proof. Z;:Lll g—gdyi = 0. Now wedge with dy; A--- A @ AREE ciy\y A ANdypi1, SO

oG —~ —~ oG
0= —dy; Ndyr A=+ ANdy; N Ndy N Adyngr + 5—dy; A(-- )
Yi dy;
then divide by 2—53—; and get 0 = w; — w;. U

Now compute div(w). From definition of w, div(w)|xny = 0. Therefore, div(w) = a sum
with multiplicity of components of V(zg) N X. Let V =P\ V(z).

Coordinates z; = 1/y1, z; = yi/y1, 2 < i <n+1. Soy; = 1/z1, y; = z;/z1. As before,
dy; = (—1/2})dz; and dy; = (1/21)dz; — (2;/2})dz;. Plug into one of our w;, say wy,;. On

VU,
-1 n+l (_1)n+1
w=|— ————dz A Ndz,.
(21 ) (0G/0yasn)
Let H(z1, ... 2n01) = F(z1,1, 20, ..., 2py1). Then H(zy,...,2p11) = zi"G(i, 2 Z’;—Yl)
Then

OH _m oG <i 22 zn+1) 1
Ozpt1 ' M1
(by the chain rule). So

ST e
21 2 21 Al

w = (;_11)”“ <(;1—)7::>dzl A ANdzy,.
T Bz

We already worked out Q™[U;] and hence Q"[UNX]. A similar calculation yields Q"[VNX] =

kE[V N X]mdzl A -+ A dz,. We therefore get div(w)|vru,,, = (m —n — 2)H where

H =V(z)NUNV,41. Therefore overall, div(w) = (m —n —2)H, H = class of a hyperplane

section. So Kx ~ (m—n —2)H.

L(Kx) = Q"[X] = span of homogeneous polynomials of degree m —n — 2 via f — fw.
(Every homogeneous polynomial ® of degree m —n — 2 gives ®/x]""""% which belongs to
L((m—n—2)V(xy)). Conversely, any function in L((m—n—2)V (zy)) is of this form. This
takes a little bit of proving. See Shafarevich, 111, 1.5.)

Example. X = smooth plane curve of degree m. Kx ~ (m —3)H (n = dimX = 1).
Therefore, L(Kx) has dimension ¢(Kx) = w If m=1orm=2then {(Kx) = 0.
If m=3, Kx ~0and {(Kx)=1. We found this differential form in one specific case. Also,
g(X) =1 (proves that X is not rational). If m = 4, then Kx ~ H, the hyperplane section.

Called a canonical curve. Here ¢(Kx) = 3.
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In P?, X C P3 of degree m. Then Kx ~ (m—4)H. If m = 4 and X is smooth, X is called
a K3-surface. If m = 3, X is a cubic surface and Kx ~ —H so H ~ —K, anticanonical

embedding. Surfaces with H ~ —K are called del Pezzo surfaces.

Question: Suppose X C P* has degree m. Then Kx ~ (m — 5)H. If m = 3 then cubic
threefold, Kx ~ —2H. So Q3[X] = 0. And Q*[P3] = 0. So is X birational to P?? ie. is X
rational?

Answer: No. (Clemens, Griffiths).

25. HYPERELLIPTIC CURVES

Consider the equation

Y =F(z) = (z —a)(z — ag) - (. — qzg41)

where F'(X) has odd degree n = 2g+ 1 and no multiple roots. Let Y = V(y? — F(X)) C A%
Let Y be the projective closure of Y in P?. Then a calculation shows that Y is singular at
o0 = (0:1:0) (check). Let X = normalisation of Y. So X is a smooth projective curve

and ¢ : X --» Y is birational and ¢ : 07'(Y) — Y is an isomorphism. Our plan:

e Understand X somewhat.

e Compute Ky and a basis for Q'[X].

First,

Y — Al

(2, y) —

is a rational map. Since Y is an open subset of X, this induces a rational map f : X --» Al
Since X is smooth, this is the same as a regular map f : X — P!

What is degf?
X =Y U {bunch of points} where Y — A! and the points map to co. If 3 € Al then

[ (B) =2
2 pts. if F(B)#0
1 pt.if F(B)=0

Therefore, f*(6) = 2/ + 2" or 2z, where 2/, 2" = (8, £/ F(8)) or z = (,0). So degf = 2.
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Know X =Y U f~!(c0). What are f*(c0), f~!(00)? degf*(oco) = 2. Therefore, f*(o0) =
2+ 2" or 2z. Let u = 1/z, a local parameter on P! at co. In the first case, v.(u) = 1
and v,7(u) = 1. So the rational function x has a pole of order one at 2’ and z”. Therefore,
v (F(z)) = —(2g+ 1) = v (y*) = 2v.(y), a contradiction. Therefore, f*(cc) = 2z, for
some point 2.

As aset, X =Y U{z}. We have the following diagram.

X Y c P2
Lf U
P! Y = V(y*— F(x))

Let p; = 071 (;,0), 1 < i < 2g+ 1. Then 2z, p1, ..., P21 are exactly the points where
f*(t) = 2t. WLOG let oy = 0 (via a change of coordinates). Then (check this):

div(z) = 2p; — 220
div(y) =p1 + -+ pagi1 — (29 + 1)200

Note that in Y, on y # 0, z is a local coordinate. On y = 0, ie. at p1,...,p2+1, y is a local
coordinate. (2ydy = F'(x)dx).

What about z..? v, (z) = =2, v, _(y) = —(2g + 1), v, _(t) = 1 where t = 29/y. And
div(t) = zoo +2gp1 — (p1 + P2 + -+ + Pag1)-

25.1. Differentials. Let’s compute Kx. Choose w = dz/y = 2y/F'(z). Then w € Q'[Y],
therefore div(w) = (2, for some ¢ € Z. In Ox._, we have ¥ = ut~2,y = vt~ 29D where

u,v are units in Ox .. So dz = (1/t*)du — (2u/t*)dt. But note du = hdt for some function

h e OX,zoo- So
de t297 [du  2u 2911 ht — 2u
- — __dt) = dt

Y v 2t v t3
So v, (dx/y) =2g — 2. So div(w) = (29 — 2)200. Therefore, Kx ~ (29 — 2) 2.
What is Q![X]?
Claim: Q!'[X] = spank{d?z, %, e @}
Why? Any w € QY X] is of the form w = (g,(z) + ng(x))%x for g1, go polys in . Need w
regular at z,,. Expressing in terms of ¢, we get

o= (o (5) + e (1)) St — 20
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So g2 = 0, otherwise pole, and deg(g;) < g — 1. So the claim is proved. Have shown that for
X hyperelliptic,

o degKx =29 — 2.

o ((Kx)=g.

* g(X)=y.

26. RIEMANN’S INEQUALITY

X = smooth projective curve.
Theorem. There exists a constant v = v(X) such that
(D) >degD+1—7 (%)
for all D € Div(X).

Remarks.

(1) For now, let s(D) := degD — (D) + 1. The theorem says that s(D) < ~.
(2) Let p;, 1 <i<d, be points of X. Then 0 < p; <p;+pa--- <p1+p2+---+pg and

SO
L(0) C L(p1) C L(p1 +p2) C--- C L(p1 + -+ + pa)

and dim L(0) = 1, dim L(p;) < 2, dim L(p; + p2) < 3 and so on. Note that the
number of non-jump locations is (d+1) —dim L(p; +- - -+ pg) = d—€(D)+1 = s(D)
where D = > p;. (Here, we say there is a jump location at ¢ if L(py + -+ pi—1) €
L(p1 + - 4 pi—1 +pi).)

(3) Suppose we have Dy < Dy. Then ¢(Dy) < ¢(D) + deg(Dy — Dy) (we saw this). So
degDy — £(D1) < degDy — {(D5) and so s(D1) < s(Ds). So
(a) if s(Dq) < 7 then s(D;) < 7.
(b) if we show (x) for all effective divisors D then (x) holds for all divisors since any

divisor D = D2 - D17 DQ,Dl Z 0. So D S DQ.

We want to show s(D) = degD — ¢(D) +1 < .
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Idea: let t € k(X)* be such that ¢t : X — P! has degree n (n can be anything - we just
pick a rational function that is not constant). Let D, = divisor of poles of . Then we will
show ¢(rDs) > rn — v + 1 for r sufficiently large.

Write Do, = > n;p;. Each n; > 0, n; = —u,,(t), > n; = n. Let wy,...,w, be a basis of
k(X) over k(t).

Consider w;. Suppose its poles outside suppD., are ¢, ..., q, with orders kq, ..., k;,. Con-
¢
j=1

basis of k(X) over k(t) and u; € L(NDy,) for N sufficiently large, for all 1 <i <mn.

sider w; := w; [[;_;(t — t(g;))*. This has no poles outside suppDu.. So {u,...,u,} is a
Let v, (uj) = —m;; (these can be negative). Then if ¢g(¢) is a polynomial in ¢ of degree k,

then v, (g(t)u;) = —kn;—my;. So g(t)u; € L(rDy) if and only if kn;+m;; < rn; for all ¢ (for

a fixed j). Let m = max; j(m;;/n;). Then k <r —m <= k+m <r = g(t)u; € L(rDy).

So l(rDw) > n(r —m+1) = rn — mn — n (since we can choose g(t) = 1,t,...,t""™). Let

v=mn(m—1)+1. Then s(rDy) < for r >> 0. But then, true for all r by earlier remarks.
Finally, D = Zle kigi- 1f q; ¢ suppDo, set u = [, soppp. (t — t(g;))*. Then div(u) =

Y aigswppee —(something supported on D). Therefore, if D' = D—div(u) = (negative off D)+

(posiii;f(()e on D), so D' < rDy for some r >> 0. So s(D') < s(rDs) < 7. And

s(D) = s(D’) since D ~ D'. This completes the proof.

27. THE RIEMANN-ROCH THEOREM
X smooth projective curve, K = canonical class of X, g = genus of X. Then
Theorem (Riemann-Roch). For any divisor D on X
D) — (K —D)=degD+1—g.

27.1. Simple remarks and consequences.
(1) D=0;1-¢K)=4¢D)—¥¢K)=0+1—g. So {(K) = g (this was our definition of
9)-
(2) D=K=V¢K)—1=degK +1—g=degKk =29 — 2.
(3) If degD < 2g — 1 then ¢(K — D) = 0 and therefore ¢(D) = degD + 1 — g.
(4) Recall: if p € X then X = P iff {(p) = 2.
If g =0 then degK =2g—2=—-2. So{l(p) — (K —p)={p)—0=1+1—-0=2.

Sog=0= X~P.
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(5) g =1=degK =0, {(K) = 1. If D > 0 then ¢(D) = degD. We showed that this
implies X = smooth plane cubic curve.

(6) g=2=degK =2 and ((K) = 2.

Corollary. Let fy, ..., fn be a basis of L(D) and assume that D is effective. Let pp: X —
P defined by p — (fo(p) = fi(p) : -+ : fu(p)) be the corresponding rational map (and it is
therefore regqular in this case). Suppose

(1) ¢(D —p)=4(D)—1 forallp € X.

(2) {(D—p—q)=4(D)—p—q forallp,q € X (including p = q).

Then @p| s an embedding.

Note: if (D —p —q) = (D — p) and p # ¢ then ¢ p|(p) = ¢p|(q). If {(D —2p) = {(D — p)

then ¢ fails to be an isomorphism on tangent spaces.
Corollary. If degD > 2g + 1 then ¢|p is an embedding X — P", n ={(D) — 1.

Proof. If E has degree > 2g — 1 then ¢(E) = degFE + 1 —g. So (D) = degD + 1 — g,
U(D—p)=degD—1+1—g=4(D)—1and {(D—p—¢q) =degD—-2+1—g=¥¢(D)—2. O

Example. g = 2. Let degD = 5. Then {(D) =5+ 1—-2=4. So X — P3 and X is
isomorphic to a curve of degree 5 in P2. (Note to self: the reason why X has degree 5 is that

the pullback of the hyperplane section under the map ¢ associated to D is equivalent to D.)

Question: when is ¢ x| an embedding?

g = 0,1: no, because {(K) =g. If g > 2, need {(K —p) =4(K) —1 and {(K —p—q) =
U(K) —2 for all p,q € X. RR says that ¢(p) — (K —p) =1+ 1 —g. Know ¢(p) = 1, so
{(K—p)=g—1=¢K)—1. Nowlet D =p+q. RRsays {(p+q)—U(K—p—q) =2+1—g,
so (K —p—q)=9g—3+{(p+ q). For this to be equal to g — 2, we need ¢(p+¢q) = 1. We
know ¢(p 4+ 1) = 1 or 2, since ¢(p) can’t increase by more than 1 when you add a point. If
l(p+q) =1 for all p,qg € X, then p|k| is an embedding. Suppose ¢(p 4+ ¢) = 2. Then let
f € L(p+ q) be nonconstant. Therefore, f : X — P! a 2—1 map since div;nfty(f) = p+q.

Definition. X is called hyperelliptic if 3f : X — P! with deg(f) = 2.

X s called trigonal if 3f : X — P! with deg(f) = 3.
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Corollary. ¢k is an embedding iff X is not hyperelliptic.
Example. Let g(X) =2. Then X is hyperelliptic; degK =2, ((K) = 2.
28. SCHEMES

Notation: h(D) = ¢(D).

RR: (D) — (K — D) =degD +1—g.

If 3X =" P! and g > 2, X is called hyperelliptic. If 3X *5' P! and ¢ > 3, X is called
trigonal.

If g > 2, X is not hyperelliptic if and only if g : X — P97" is an embedding. Consider
g = 3. Suppose X is not hyperelliptic. Then ¢k : X < P? is an isomorphism X — C' C P?
with degC' = degK = 2g — 2 = 4. Therefore, if g = 3 and X is not hyperelliptic, then X is
isomorphic to a smooth plane quartic.

Conversely, suppose X C P? is a smooth plane quartic. Then g(X) = 3 and also, if
H = hyperplane section of X = line NX, then K ~ (4 —3)H = H. So ¢x = ¢y = id,
an isomorphism. So X cannot be hyperelliptic. Therefore, g = 3, not hyperelliptic <=
smooth plane quartic. Such an X is trigonal because if L; and L, are distinct lines passing
through a point and they both intersect X in exactly four points, then f = L;/Ls is a degree
3 map to P! (using that degf*(q) = deg(f)). Picture:

Ly
AN iy
R
28.1. Schemes and sheaves. General plan: first generalise the notion of affine variety.

A=k[ry,...,2,]/1, k =k, I radical ideal, then A = k[X], X = V(I) C A™.

To allow:

(1) k not alg. closed, or not even a field, eg. k = Z.
(2) A has nilpotents, eg. A = k[z]/(x?).
(3) A might not be f.g. over k or Z, eg. A,, Ay.

In fact, let’s allow any A which is commutative with unity. We will define SpecA

® as a set.
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e give it a topology.

e scheme structure.
SpecA = {P C A|P is a prime ideal}
note: (1) = A is not a prime ideal.

Example. X C A" affine variety. p € X <o m, C A maximal ideal. A = k[X]. Let
maxspecA = {m C A|lm maximal}. Recall that a regular map X — Y, k[Y] = B, corre-
sponds to a ring homomorphism B — A. We want that if B — A is a ring homomorphism,
would like a map maxspecA — maxspecB. This doesn’t work for general A and B, eg.

Z— Q,

maxspec(Q) — maxspec(Z)

{0} = {(2).03).5),...}
No such natural map exists. Idea: use SpecA instead.

Definition. Let f : A — B be a map of rings. Then define the associated map ay : SpecB —
SpecA via ay(p) = f~(p).

Check that f~!(p) is a prime ideal.

Example. Z — Z[i] = Z[X]/(X? + 1). Let’s “understand” the map SpecZ[i] — SpecZ.
SpecZ looks like:

@ & 6 0 4y (0)

What about SpecZ][i]?
0 is a prime ideal. If a + bi € Q € SpecZ[i] then a® + b? € Q. So there is a prime ideal
p € Z with p prime, p € Q. Recall: Z[i] is a PID. If p =1 (mod 4) then there are 2 primes

of Z[i] containing p. If p = 3 (mod 4) then pZ[i] is prime. If p = 2 then the only possible
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prime of Z[i] containing p is (1 4 i) = (1 — ). The picture is:

(1424)

>©<>©< .

(144) ®) (1—24) (0)

2 & 6 O 4 (0)
Example. Z — Z[z|. SpecZ|z]| =7 () C Z[z] prime. Then either:
1) Q=0
(2) @ = (f(x)), f irreducible over Z.
(3) @ = (p), p € Z prime.
(4) Q = (p, f(z)), f € (Z/pZ)[z] irreducible and f irreducible.

Get a picture a bit like the previous one, except that there are many points over each point

of SpecZ. For example, over zero have (0) and (f(z)) for all irreducible f.

Other good examples: A — A/I, A — A,, A — Ay

29. LOCAL PROPERTIES

Example. X = SpecC[z,y]. What are the points of this?

(1) p=(0).
(2) p=(f(z,y)), f(z,y) irred. over C.
(3) my = (& —p1,y —p2), p = (p1,p2) € C.

The first two kinds are known as generic points.
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Examples. (1) A5 A/I, Spec(A/I) — SpecA,p — 7 (p). Recall Spec(A/I) = {p €
SpecA : p D I}. The map is the inclusion.
(2) A — A, f € A. Then get SpecA; = {p € SpecA : f ¢ p} — SpecA, again an
inclusion.
(3) A— Ag = S7'A, S C A multiplicative set. (A, = (A \ p) A is a special case.) So
get Spec(Ag) — SpecA, where Spec(Ag) = {p € SpecA:pNS = o}.

29.1. “Points” and functions of SpecA.

Definition. If p € SpecA, k(p) = (A/p)o = A,/pA, is a field. Called the residue field of A
at p.

We get a map A —% k(p). Kernel is p. (Note Spec(k(p)) — SpecA is {pt.} — p.)
Suppose f € A. This defines a “function” for p € SpecA, f(p) = ev,(f). (Note: if
p=(r1—ay,...,on —ay,) C A= Eklxy,...,z,|/1, then k(p) = k. And A — k = k(p)
is the map f +— f(ai,...,a,).)

Example. f € Z. f defines a function as above. f(0) = f € Q. f(p) = f (mod p) € Z/pZ
(a field) for p prime.

Question: Does the function determine the element of A? ie. suppose f,g € A and
f(p) = g(p) for all p € SpecA. Is f =g in A?

f(p) =g(p) iff f—g€p,so f(p)=g(p) for all p € SpecA iff f — g € [ cgpecn P- Recall:
MNpespeea? = V(0) = {f € A: f* = 0 for some n}. So f(p) = g(p) for all piff f — g is
nilpotent.

If v/O = 0, ie. A has no nonzero nilpotent elements, then answer to the question is yes.

On the other hand, if v/0 # 0, the answer is no.

Example. A = k[z]/(2?). Then SpecA = {(z)} (since any prime ideal contains x). Write
p = (z). Then for a,b € k, (a+ bx)(p) = a € k(p) = k, since z = 0 in k. Here the function

does not determine the element.

Key idea:
For X a quasiprojective variety, a lot of what we have done so far in Volume I depends

only on the local ring Ox ).
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(1) dim,(X) = Krull dim. Ox,,.
(2) Txp = (mX,p/m%(,p)*-
(3) X is smooth at p if dimg(mx, p/m%,) = Krull dim. Ox,,.

Assume A Noetherian.

Definition. If (A,m) is a local ring then A is a regular local ring if
dim 4/, (m/m?) = dim A

where dim A means Krull dimension.

Definition. If X = SpecA then let, for p € SpecA, Ox, = A,.
Then:
o dim, X :=dim(Ox,) = dim A,.

e The tangent space

Txp := Homyp) (pA,/p* Ay, k(p)),

where k(p) = A, /pA,. Tx, is a vector space over k(p).
o X is regular (smooth) at p if (A,,pA,) is a reqular local ring.

Exercises. (1) Suppose that A = k[xy,...,z,|/I = k[X], X C A". Suppose Y C X is
irreducible. So'Y = V(p), p C A prime ideal. Show that A, is regular <— Y ¢
sing(X) = for almost all ¢ €Y, q is smooth on X.

(2) Find all the points of X = Spec(Z[mi]) which are not reqular. Here, m € Z.

30. THE ZARISKI TOPOLOGY

X =SpecA. If E C A, I = (E), define V(E) = V(I) = {p € SpecAlp D I}.
Easy facts:

(1) V() UV (J)=V(IN.J).

(2) N V(Ea) = V(U Ea).

3) Na Vo) =V (X 1a), Lo = (Ea).

Definition. The Zariski topology on X = SpecA is the topology whose closed sets are the

V(I).
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Remarks:

(1) ¢ : A — B gives “p : SpecA — SpecB continuous. Why? Because for E C A,
(p) 'V (E) = V(¢(F)) by a definition chase.

(2) ¢ : A— A/I. Then the image of “p : Spec(A/I) — SpecA is the closed subset V (1),
and % is a homeomorphism onto its image.

(3) ¢: A — Ag gives Spec(Ag) — SpecA and the image is the open set
{p € SpecAlpnN S = &}.

Exercise: show that this set is open.
(4) ¢ : A— Ay gives ¢ : SpecAy — SpecA with image Uy open.
Us = {p € SpecA|f ¢ p}. Also denoted Dy, D(f), ... Equals SpecA\ V(f).

Definition. If X is a topological space then B = {Uf}sca is a basis of the topology on X if
(1) Uy open.
(2) If U C X is open then U = UUch Uy.

B is called nice of Us NU,; € B for all Ug, U, € B.

Key example: X = SpecA.

(1) {Uy : f € A} isabasis for the Zariski topology on X. Why? U = X\V(I) = U, U;.
Andif I = (fi,...,fr) then U =Ug N---NUy,.

(2) If f € A, i € A then (J,., Uy, = X iff (f;)ien = A because it can’t be contained in a
maximal ideal.

(3) UsNU, = Uy, (since V(fg) =V (f)UV(g)) so B={Us}fea is a nice basis.

(4) Upea U = X\V(fi i€ A).

(5) Whenis Uy C U,? Up C U, iffforallp, f¢p = g¢piffforalp gep = f¢€
p < f € A/(g) is nilpotent < 7" =0« f* = gu for some n > 0 and some u € A.
SonCUgﬁf”:gu@fe\/@.

(6) Uf =@ < V(f) =X so f nilpotent.

Proposition. SpecA is compact, ie. every open cover has a finite subcover.

Proof. Exercise. O
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Example. Let X = SpecC[z,y|. Let p C C[x,y] be prime but not maximal. Then {p} C X.
Closure of a point = ? {p} = V(p) = {q € SpecClz,y] : ¢ D p}. Therefore, p is a closed

point <= p is maximal.

If p,q € X, say q is a specialization of p if ¢ € {p}. If {p} = X, say p is a generic point of
X.

Example. SpecC|[z,y, z]. Here, V(x,y,2) is a closed point. V(z,y) is another point. Its
closure is itself, plus all the points on the line z = y = 0. V/(2) is another point. Its closure

is itself, together with the points corresponding to all subvarieties of z = 0.
30.1. Irreducible decomposition. X = X; U X,, Xy, X5 proper closed <= X reducible.

Proposition. If A is Noetherian then SpecA = X3 U---UX,, X; closed and irreducible.

This decomposition is unique.

Do as an exercise, or look in book. Similar to irreducible decomposition for affine varieties.

31. PRESHEAVES

Basic idea: if X is an affine variety and U C X is open then Ox(U) = ring of regular

functions on U. If U C V are open sets, we get a restriction map Ox (V) — Ox(U).

Definition. Let X be a topological space. Given the following data:

(1) For every open set U, a set F(U).
(2) For every inclusion U C V of open sets, a map (called restriction) pY; : F(V) —
FU).
This system of data F is called a presheaf if
(1) F(@) = single element set.
(2) pY =idgw) for all open U.

(3) For every inclusion of open sets U CV C W, pi¥ = ptpV .

If all the sets F(U) are groups, rings, A-modules etc. and all the p}; are morphisms of

such, then F is called a presheaf of groups, rings, etc.
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Examples. (1) Let X and Y be topological spaces. Let F(U) = {f : U — Y :
f continuous} and py; the obvious restriction maps. Then F is a presheaf, denoted
C(X,Y).

(2) X = differential manifold, C*(X)(U) ={f:U — R : fis C*}.
(3) X irred. quasiprojective variety, F(U) = ring of rational functions of X which are

regular on U.

31.1. Key example/construction: X = SpecA.
Define presheaf Ox.
Simplest case: A = domain, K = Frac(A). Define

Ox(U) :={f € K : ¥p € U there exists an expression
f=a/bwith a,b € A and b(p) # O(ie. b ¢ p)}

Note: Ox(U) is a subring of K for all U. If U C V then Ox(V) — Ox(U) is just the
inclusion Ox (V) C Ox(U) C K. Also, Ox(@) := 0 (zero counts as a ring). Then Oy is a

presheaf of rings on X.
Proposition. If A is a domain then Ox(X) = A and Ox(Uy) = Ay for all f.

Proof. Let u € K [Note that A C Ox(X) C K; Ay C Ox(Uy) C K|. Case 1: Ox(X).
For all p € SpecA, u = a,/b, with a,,b, € A, b, ¢ p. Let I = (b, : p € SpecA). Then [
cannot be contained in any prime ideal, and so [ = A. So there exist py,...,p, € SpecA and
c1,...,¢ € Asuch that Y ¢b,, = 1. Then by, u = a,, implies u = > ¢;bp,u = Y ¢;a,, € A.
Case 2: Ox(SpecAy), I = (b, : p € SpecAy) where u = a,/b, for all p with f ¢ p , and
b, ¢ p. Then IA; = (1). So there are py,...,p, € Us and ¢; € A such that 1 =" ¢;b,,/f"
for some n > 0. So f" = > w;b,,. So uf™=> ca, and u € Ay. O

What about if A is not a domain? eg. A = k[z]/(2?) or worse. Want to define Ox. Let’s
define
Ox(Uy) = 4y
for any f € A, so Ox(X) = A.
If f € \/(0) then Ox(U;) = Ox(@) = Ay = 0. What if U; = U,? This is true iff

rad(f) = rad(g) which implies A; = A,.
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Suppose Uy C U,. Then f" = gu for some u and some n. Then there exists a natural
map A, — Ay given by a/g™ — au™/f™. (Or as an exercise, can get this map naturally
by using the definition of localisation via a universal property.)

So Ox would be a presheaf if we just considered open sets of the form U;. Now we
want to define Ox(U) in general. In the case X = SpecA and A a domain, then Ox(U) =
No,cv Ox(Uy) € K.

Suppose we're given a poset A and a bunch of sets E, for a € A, and if a < 3 there is a

map f7: Bz — E, such that

(1) f*=idg, for all a.

(2) If a < B < then f7 = fIf].
Then define

lim F, 1= {(Za)aca € H E,: f%(x5) = x, for all a < 8}

a€EN

Notes:
(1) There exist natural maps lim £, — E,, for all a (the projections).
(2) If E, are all groups, rings, A-modules, etc. then so is lim E,.

(3) Suppose a < f = Ej3 C E, C S for some set S. Then in fact lim E, = Ny, Eo-

Definition. A a ring, X = SpecA, Ox(Uy) = Ay for all f € A. For a general open
U C SpecA, define

OX(U) = 1&1 Ox(Uf)

UfCU

ie. the indexing set is A = {U; C U} under inclusion.
Exercise. Check that Ox is a presheaf of rings.

32. SHEAVES

Suggested homework problems: (Shafarevich vol. II)
Sect. 1 p. 15 #3
Sect. 2 p. 25 # 2,6,7

Sect. 3 p. 39 # 1,2
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32.1. Sheaves. A presheaf F on X is given by F(U) for all open U and restriction maps
pY : F(V) — F(U) for every inclusion U C V. Want to capture other properties of functions,
eg.

(1) Locally 0 = 0.

(2) Functions which agree on overlaps can be glued together.

Definition. A presheaf F on X is a sheaf if for any open set U C X and any open cover
U = U,en Ua then the sheaf axiom holds:

If sq € F(Uy) for all o € A and ngmUﬁ<3a) = PginUg(sﬂ) € F(Uy,NUg) for all a,f € A
then there exists a unique s € F(U) with pf; (s) = sq for all a € A.

Note: this implies that if s1, s, € F(U) and pfj (s1) = pf,_ (s2) for all o then s; = so.
To do:

e Ox is a sheaf of rings.
o F sheat = stalk F, at p € X.
e Sheafification F — F+.

e Maps of sheaves.

X = SpecA. Recall Ox(X) = A, Ox(Uy) = Ay for all f € A. And Ox(U) = lim Ox(Uy).
UfCU
For U C V, since Ox (V) C HUva Ox(Uy) and Ox(U) C HUch Ox(Uy), the restriction

map can just be taken to be the projection map from one product to the other.

Definition. Let B be a nice basis of the topology of a topological space X. A B-sheaf F

consists of the following data:

(1) For every U € B, a set F(U).
(2) For every inclusion U C V, U,V € B, a map pY; : F(V) — F(U) such that
(a) F(@) = single element set.
(b) pF =1id for all U € B.
(c) ForUcCV cW, UV, W eB, pll =pirl.
and the sheaf axiom (on B). If U = U, and U, U, € B for all « and s, € F(U,) such that
pgszB(sa) = pgimU;;(%) for all o, B then there is a unique s € F(U) such that pf; (s) = sq

for all a.
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Proposition (1). Ox is a B-sheaf where B={U; : f € A}.

Proposition (2). If Fg is a B-sheaf then F extends uniquely to a sheaf F on X, and
FU) = lim F(Uy).

BaUaCU

Proof. Exercise. O

Proof of Proposition (1): (1) Given U = |, U,, where U,U,, € B ={U; : f € A},
WLOG we can take U = X = SpecA. (Exercise: make sure you buy this reduction.)

(2) WLOG the open cover can be taken to be finite. So X = U, U---UU, ., (¢1,...,9,) = A.

Let s1,...,8,, ;i € Ox(uy,) = Ag, si = i/, ti € A, 1 <@ < r and n fixed. (We are
trying to show that the sheaf condition holds so we take arbitrary elements whose restrictions
agree. We can take n fixed because each s; can be multiplied by an appropriate power of g;
as necessary.) Uy, MUy, = Uy,,. The sheaf condition says that t;/g7 = t;/g7 in Ag,,, ie.

there exists m such that
(9i9;)™ (tigy — t;9:) =0
in A. Want to find an s € F(X) = A such that p,)fgi(s) =s; for all i, ie. s =1¢;/¢ in A,,.
Let u; = tig®. Then w;g]"™ = u;g"™" in A. Note that (¢i"™,...,g7"™") = A, so
there are a; such that >, ¢7""™"a; = 1 for some a; € A. Let s = >/, u;o; € A. Then
g;”Jr"s = 9" ey =0 uig ;= . So in Ay, 5= uj/g;-wr" =t;/g5
So an appropriate s exists. To show uniqueness, need to show that if p)U(gj (s) =0 for all j

then s = 0. But p()ng(s) = 0 means g7s = 0 for some n. If this is true for all j then s =0

since for each n > 1, (g7, ...,9) = A.

33. STALKS AND SHEAFIFICATION

To do list: stalks, sheafification, ringed spaces, SpecA, maps of sheaves and ringed spaces,

locally ringed spaces, schemes.

33.1. Stalks. Let F be a presheaf on a topological space X and p € X.

Definition. A germ of F at p is an equivalence class of pairs (U, s), s € F(U) withp € U
and U open. The equivalence relation is (U, s) ~ (V,t) if there exists W C U NV such that

P (s) = piv ().
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Let F, be the set of germs of F at p. If F is a sheaf of rings, groups, A-modules... then so

is Fp. Note: can also be defined as lim F(U) (the “union” limit instead of the “intersection”
peU

limit).

Example. Let X C A" be an irreducible affine variety. Then we have a sheaf of rings Ox,
with Ox(U) ={f € k(X) : f is regular at every p € U}. If p € X, what is (Ox),? Answer:
Oxyp={f € k(X) : f regular at p} = k[X],,,.

Example. Let X = SpecA and p € X. What is (Ox),? Answer: Ox,p = limOx(U) =
U>sp
lim  Ox(U,) =lim Ox(Uy) = lim Ay = A, (check these statements).
Ua3p, Ua€B fép fép

33.2. Sheafification. Suppose F is a sheaf on X. Suppose s € F(U). Consider the function
p— s, = (U,s) in F,. Denote this function U — U,cpyF, by fen(s). Question: if s,t € F(U)
and fen(s) = fen(t), is s = t7

Answer: yes. Since U has an open cover by sets W, with s|w, = t|w,, so by the sheaf
axiom s = t.

Let

FHU) ={a:U — Uy F, : a(q) € F,Vq € U and
VpeU3dnhdpeW C U and w € F(W) such that a(p) = w, € F, for all p € W}

If F is a sheaf, we have basically shown F*(U) = F(U) for all open U (natural map is
F(U) — F*(U)). Really we have a map of sheaves F — F* which is an isomorhphism if F
is a sheaf (so every sheaf is a sheaf of functions!) Instead, if F is only a presheaf, then F*
is still well-defined and if U C V, then F* (V) — F*(U) is restriction of functions. This is
a sheaf on X, and we have a map of presheaves F — FT.

Fix presheaf F. Let sp(F) = UpexF,. Define a topology on sp(F) as follows: for every
se F(U),let {sp:p e U} Csp(F) be an open set.

Exercise. Show that
FHU)={s:U — sp(F) : s is continuous and 7s = idy }

where 7 : UyexF, — X maps a € F, to p.
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Definition. A ringed space is a pair (X, Ox) consisting of

(1) X is a topological space.
(2) Ox is some sheaf of rings on X.

Ox 1is called the structure sheaf of X.

Examples.

(1) Let X C R? open ball, Ox(U) ={s: U — R cts}. Then (X,Ox) is a ringed space.
(2) Instead, Ox(U) ={f:U — R: fC*}. Then (X, Ox) is a ringed space.

(3) (SpecA, Ospeca)-

(4) X C A" affine; (X, Ox).

34. RINGED SPACES

Ringed spaces; morphisms of these; SpecB — SpecA; locally ringed spaces; schemes.

Ringed space (X, Ox), Ox a sheaf of rings on X.

Definition. A morphism of ringed spaces (p, ") : (X,0x) — (Y,Oy) consists of the
following data:

(1) ¢ : X =Y a continuous map of spaces.

(2) @f - Oy (U) — Ox (¢~ 'U) for all open U C Y.

such that for all U C V CY open, the following diagram commutes:

o
Oy (V) Ox(¢™'V)
Py pijE
#
Pu 1
Oy (U) Ox(¢~'U)

Definition. If o : X — Y s a continuous map of topological spaces and F is a sheaf on X,
define for U C Y, (p.F)U) = F(p~'U). ForU CV CY, define p;; = pzjg. Then @.F

is a sheaf on Y.
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Definition. Let F,G be sheaves (of groups, rings, ...) on X. A morphism of sheaves
v F — G (of groups, rings, ...) consists of morphisms

Yo FU) = G(U)

for all open U C X, such that for U CV C X open,

Yy

F(V) G(v)
FU)y —2 G

commutes.

Alternate definition: a morphism of ringed spaces (p, ¢*) : (X,0x) — (Y, Oy) consists
of

(1) ¢ : X — Y continuous.

(2) ¢ : Oy — »,Ox a morphism of sheaves of rings.

Example. Let X = SpecA, Y = SpecB, ringed spaces. Let’s consider morphisms X — Y.
For example, if A : A — B is a morphism of rings, define *\ : SpecB — SpecA, a morphism
of ringed spaces, as follows. 2\ = (¢, ™) where ¢ : SpecB — SpecA was already defined.
For Uy C SpecA, gpﬁf : Oy (Uy) — Ox (¢~ 'Uy) is the natural map Ay — By induced by .
Here Ox (¢~ 'Uy) is identified with U,y C SpecB.

In general for an open U, define ¢}, : Oy (U) — Ox(¢~'U) as the limit of the above mor-

phisms, which makes sense since Oy (U) = lim Oy (Uy) and Ox(¢~'U) = lim  Ox(U,).
UfCU UgC<P_1(U)
Exercise: find this natural map and then show that ¢# : Oy — ,Ox is a morphism of

sheaves. Exercise: In general, define a B-morphism of sheaves and show that it extends

uniquely to a morphism of sheaves.

Exercise. (1) X = SpecB, Y = SpecA. Suppose ¢ : X — Y is induced from A :
A — B. Show that ¢ : Oy, — Ox,p given by (U,s) — (¢7'U, ©¥(s)) is a local

homomorphism, ie. ¥ (M) C mx, for all p € X.
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(2) Find a morphism of ringed spaces ¢ : X — Y such that ¢ : Oy ) — Ox,, is not
a local homomorphism.

(3) Show that if (¢,¢") : SpecB — SpecA is a local homomorphism then there is
A : A — B such that (o, o) = %\. Note: if it exists then A will be given by @fpecA.

Definition. (X, Ox) is a locally ringed space if
(1) X is a topological space.
(2) Ox is a sheaf of rings on X and Ox,, is a local ring for allp € X.

A morphism of locally ringed spaces ¢ : (X, Ox) — (Y, Oy) is a morphism of ringed spaces
such that gpf : Oypp) — Ox,p is a local homomorphism for all p € X.

Remark. If (X, Ox) is a locally ringed space and U C X open then (U, Ox|y) is a locally

ringed space.

Definition. A scheme is a locally ringed space (X, Ox) such that for all p € X, there exists
an open neighbourhood U C X of p such that (U, Ox|y) = SpecA for some ring A, as locally
ringed spaces. [Could also just say as ringed spaces, since an isomorphism automatically

maps unique mazimal ideal to unique mazimal ideal.]
An open set U 3 p such that (U, Ox|y) = SpecA is called an affine nbd of p.

Definition. A morphism of schemes is defined to be a morphism as locally ringed spaces,
ie. (0, ") : X =Y, p: X —Y continuous, o : Oy — p,Ox with gpﬁ 1 Oypp) — Oxp a

local homomorphism for all p.

35. SCHEMES

Last time: (X, Ox) is a scheme if
(1) it is a locally ringed space.
(2) every pt. p € X has an open nbd U such that (U, Ox|y) = SpecA for some ring A.
Morphisms of schemes are morphisms of locally ringed spaces.
e Maps to SpecA.
e Examples.

e (Quasiprojective variety ~~ scheme.
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e Glueing of schemes and projective space.

Example. X = Speck[z,y]/(z* — y?) = Spec(klz,y]/(x — y)) USpec([k(z, y]/(z + y)) is
irreducible decomposition of X.
Map 7 : X — Y = Speck[z] corresponds to the natural inclusion k[z] — k[z,y]/(z? — y?).

Picture:

Definition. For ¢ : SpecB — SpecA, corresponding to a ring homomorphism A : A — B,
if p €Y then the fibre X, over p is by definition

In our example, X1y = V((z — 1) C k[z,y]/(2* — y*)) = Spec(k[z,y]/(z — 1,1 — y?)) =
V(iz—1,y —1)JV(z — 1,y + 1). The fibre Xo = X(,) is Spec(k[z,y]/(z,2* — y?)) =
Spec(k[z,y]/(z,y?)). This is known as a fat point.

In general, consider
klyl/(y*) — klyl/(v*) — Kly)/(y)

The associated maps are homeomorphisms of Spec’s. They correspond to the inclusions
@ < o < o

of a point into a thicker point into a thicker point.

Proposition. If X is a scheme and A is a ring then morphisms (p, o%) : X — SpecA are

in one-to-one correspondence with ring homomorphisms A — Ox(X).

Proof. Exercise. O

If ¢ : X — SpecA is a morphism of schemes then Oy is a sheaf of A-algebras.

Examples. (1) X — SpecZ always exists.
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(2) X — Speck, k a field. Means that Ox(U) is a k—algebra so Oy, is a k-algebra for
all p € X. Called a k—scheme or scheme over k.
(3) A} = Spec(k[t]). In general, A% = SpecAlty,...,t,]. What is a map X — A}?

Answer: a family of schemes.

Terminology: if X — SpecA we call X an A-scheme. The maps in the category of

A-schemes are scheme maps X — Y which commute with the given maps X, Y — A.

35.1. Quasiprojective varieties. Let X be an affine variety, X C A". To give X, you
have to give coordinate ring of X ~» Speck[X], a scheme. Now suppose instead that X
is quasiprojective. So let’s define a scheme X. As aset, X = set of all irreducible closed
subvarieties of X. If U C X is open, U = set of all irreducible subvarieties of U. If Z C U
closed, then X > T D Z, so Z is closed in X. Consider U = {Z : Z irred subvariety of U}.
Declare this to be open. Put O (U) = k[U]. Check this gives a sheaf and that (X,Oy) is

a k—scheme.

36. PrRODUCTS

Quasiprojective varieties ~~» schemes.

X quasiprojective.

X set of all irreducible closed subvarieties.

U’ = set of all irreducible closed subvarieties of open U.

U={ZcX:ZecU}.

0% (U) = Ox(U) = k[U]
Exercise. This (X,0%) is a scheme, and in fact a k-scheme.

How do regular maps correspond? If f: X — Y, X, Y quasiprojective, then f X >Y
is defined by putting, for Z an irreducible closed subvariety of X, f: Z — m cyY.

We also need f#: Oy — f,0%. For U C Y, need Op(U) — O (f'U). But we have a
map k[U] — k[f'~U] and can use this one.

Exercise. This gives an isomorphism with the category of quasiprojective varieties over k

with its image in the category of k—schemes.
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Next time: Open subschemes, closed subschemes, reduced subschemes, finite type.

Now: Products.

36.1. Products.

Example. Let X,Y and S be sets.

XxgY s X

”i 6 l

Y S

Define X xgY ={(z,y) € X xY : a(z) = 5(y)}. The diagram commutes.

Some important special cases:

(1) S=pt. Then X xgY =X x Y.

(2) X,Y C S and «, § the inclusions. Then X xgY =X NY.

(3) Y C S, Binclusion. Then X xgY =a (V). Y =p € S. Then X xg{p} = a"(p),
the fibre.

(4) X =Y. Then X xg X = {(z,y) : a(x) = 5(y)}.

Example: X = Speck|[t], Y = Speck[s]. Want X x Y to be Spec(kl[s,t]) = A% This is too

big to just have X x Y as a point set.

Universal property: For sets,

X
S

X XgY is the unique up to iso. set such that whenever the diagram

B
Y ——

q1
Z — X
q2l \La

Y S

B
R
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commutes, there exists a unique map Z — X Xg Y such that

Z
\\
® XXSY?X (*)
po \La
B
Y S

commutes.

Definition. Let X,Y,S be schemes, X,Y are S—schemes and o : X — S, f:Y — S.
A fibre product X Xg Y is a scheme together with maps of schemes p1 : X XgY — X,
Py X XgY =Y, such that

p1
XXSYHX

SEE

Y S

commutes, and for all S—schemes Z — S and maps q; : Z — X and qz : Z — Y such that
Z
q2 l
Y

commutes, there ezists a unique morphism Z — X XgY such that (x) commutes.

q1
—_—

B

CQT:X‘(

Proposition. If X = SpecA, Y = SpecB and S = SpecR, then X XgY exists and is
Spec(A ®g B).

Proof. (Sketch). Consider the maps of sheaves on global sections. Get:

7 <—»A
B<~—R

Where 77 is the pushforward in category of rings. Turns out to be A®g B, since the universal

property for X xg Y translates to the universal mapping property for A ®r B. O
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Theorem. If
X

.
Y —§
are maps of schemes then the fibre product X xgY exists.
Examples. (1) A} Xgpeck Aj = Spec(k[s] ®y, k[t]) = Spec(k[s, t]) = A2,
Exercise: What is A} Xgpecz AL?

(2) A} Xgpecz Spec(A) = Spec(Zlxy, ..., x,] @z A) = A.

36.2. Fibres. If Y is a scheme, let k(p) = Oy, /my,, for p € Y. The inclusion p — Y may
be regarded as Spec(k(p)) — Y. Then there is a diagram

X
|/
Spec(k(p)) — Y
Definition. The fibre f~*(p) := X Xy Spec(k(p)).
37. CLOSED SUBSCHEMES, REDUCED SUBSCHEMES, SEPARATED SCHEMES
If X CY are affine varieties then kY] — k[X] so k[X] = k[Y]/] for some ideal I C Y.

Definition. X,Y schemes. Then ¢ : X — Y is called a closed embedding if every point
p €Y has an affine neighbourhood U such that o=(U) C X is affine and ¥ : Oy (U) —
Ox (e 1 (U)) is surjective.

Main example: if B = A/I then ¢ : Spec(A/I) — Spec(A) is a closed embedding.

Proposition. If p : X — SpecA is a closed embedding then X is affine and X = Spec(A/I)

for some ideal I C A.
37.1. Reduced subschemes.
Example. Consider k[z,y]/(2?) — k[x,y]/(x) — 0. So Spec(k[z,y]/(x)) — Spec(k[z, y]/(z?))

is a closed embedding. Regard as the embedding of a line in a double line.
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If X = SpecA, define X,.q = Spec(A/+/(0)). Then X,.q C X is a closed embedding.

Proposition. If X is any scheme then we can define a reduced scheme X,eq. (If X =

U, Spec(A,) then glue together Spec(Ay/+/(0)) to get X,eq.)

37.2. Separated schemes. A topological space X is Hausdorff if for all p,q € X with
p # q, there exist open sets U > pand V 3 ¢qwith UNV = @.

Proposition. X is Hausdorff if and only if the diagonal A C X x X is closed in the product
topology.

Bad example: The bug-eyed line.

X is covered by two open affine subsets X; & Al X, = AJ.

Glue X (origin o;) and X5 (origin 0,) along X \ 01 = X5 \ 0o via the map t +— ¢ [t — ¢!
gives P;].

Why is this a bad space? Consider the inclusions ¢; : X; < X, i = 1,2. Then {x € Al :
é1(x) = ¢o(z)} = A\ 0 is not closed.

In general, given f : X — S, there exists a unique A : X — X xg X such that pyA =
A = idy.

Definition. f: X — S is separated if A : X — X xXg X is a closed embedding. We also

say that X 1s S—separated, and if S = SpecZ we say that X is separated.
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Example (continued): A : X — X X; X := X Xgpee(r) X. This is covered by the
following affine sets = A? with the given origins.
X1 X X1 (01, 01)
X1 x Xo (01, 09)
X2 X X1 (02, 01)
X2 X X2 (02, 02)
(X1 x Xo)NA(X) ={(z,y) € A? 2z € X1\ 0y & X5\ 02} not a closed subspace. So X is

not separated.

AX) N (X1 X Xa) = A(X) N (X x Xa) U{(01,00)}.

A(X) = affine line with four origins. A(X) = affine line with two origins.

Ox.0;, = Ox,, C k(t). No function can tell o; and o, apart.

Unravel definition in case f : X — Y, X = SpecB, Y = SpecA. f corresponds to ring
map A : A — B. We get A# : B®4 B — B, which maps b; @ by to A7 (by @ 1)AF (1 ®@by) =
biby. This is a surjective map and ker A% = (b ® 1 —1®b : b € B). Therefore the map
A: X — X Xy X is a closed embedding. So f is separated.

Basic facts:

Proposition. Suppose X is a scheme over SpecB (X is a B-scheme). If X =|JU, is an

open affine cover such that
(1) Uy, NUg is affine for all o, 3.
(2) Ox(U, N Usg) is generated by the image of Ox(Uy) — Ox (U, NUgz) and Ox(Us) —
Ox (U, NUp).

The X 1is separated over B.

Notes:

e The converse holds too. [If X separated then any open cover U, satisfies the two
properties.]

e doesn’t depend on B.
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38. Ox—MODULES

Ox-modules and coherent sheaves and their cohomology.

Definition. (X,Ox) a ringed space. A sheaf F is called an Ox-module (or a sheaf of
Ox-modules) if
(1) F(U) is an Ox(U)-module for all open U C X.
(2) For all open U C V C X, p = pl; : F(V) — F(U) is compatible with the module
structure. That is, if a € Ox(V) and s € F(V) then (as)|y = aly - s|v.

Examples. (1) Ox, the free module O%.
(2) If X is an irreducible variety with function field K(X), then K(X)(U) := K(X) for
all U is the constant sheaf of rational functions.
(3) X = SpecA. Let M be an A-module. Define an Ox—module M by (for f € A)
M(Uf) = M; =M ®4 Ay, an Ox(Uy) = As—module.
Need to check: this defines a B-sheaf and that M is an Ox—module. If X C A™,

can also define M for a k[X]-module M in the same way.

Glueing sheaves on a topological space [on a scheme]: given X a topological space

[scheme] and U; an open cover [open affine cover| and F; a sheaf on U; [Op, = Ox|y,—module]

for all 4, and isomorphisms ¢y; : Fi|v,nv, — Fjlu,nu; [isomorphisms of Ox|y,ny,~modules],
such that
(1) i = 1.

(2) i = @jrpij on U;NU; N Uy.

then there exists a sheaf F on X [an O,—module| such that F|y, = F; for all i.

Definition. Let X be a scheme. An Ox-module F is called coherent if there exists an open
cover {U;}, U; = SpecA; of X and finitely-generated A;—modules M; such that F|y, = ]\Z on
U;.

Fact.
If F is a coherent Oxy—module and if U C X is affine and open, U = SpecA with A

Noetherian, then F|y = M for some finitely-generated A-module M.
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Example. X =P}, S = k[xg,...,x,]. X covered by open affine schemes U;, 0 < i < n.

U; := Spec (k {@,,x—n}> .
L T

These glue (read glueing of schemes section in Shafarevich vol II). Can also define P7,

U; = SpecA[2, ..., 22].
Ox(U;) = k [@ﬁ} - (S FD
T T Til/o

(the zeroth graded component of graded ring). For f € S homogeneous, {U;} is a basis of
the topology and we define Ox (Uy) = S[1/ flo.

Let M be a graded S—module, eg. M = I C S, I homogeneous. Or eg. M = S/I for
such an I. an example is the module M = S(d) such that M is the module S but shifted,
S(d)e = Sgtre. For example S(—1) is generated by one element, 1, of degree one, since
1€ Sy=5(—1);. And S(—1)p =51 =0.

Want to define a coherent Ox—module M for X = P*. We put M(Uf) =M [H =
0

f
Check:

M is a B-sheaf, B = {Uy : f homogeneous}, on P™.

<M ®g S [lD . Since M was finitely-generated, this is a f.g. Ox(Uy)-module.
0

M extends uniquely to a coherent Ox—module.

Fact.

If F is a coherent Ox-—module on X = P" then there exists a f.g. graded S-module M
such that M = F. Note that M is not unique!

Important special case: M = S(d). Then let Ox(d) := S(d).

Example. Let X be an irreducible variety, ie. the scheme associated to such. So k(X)
exists. Let D = {(U;, fi)}i_; be a Cartier divisor on X, f; € k(X)*, U; affine. Define a
coherent Ox-module Ox (D).

1

for 1 < <r and glue using the obvious maps. Check:

Ox(D)

U;

(1) Ox(D) is a coherent Ox—module and in fact is locally free of rank 1.
(2) Compute Ox(D)(X) =: H°(X,Ox(D)). (This is a subset of k(X).)
(3) Ox(=D), Ox(=D)|u, = fiOx

U; -
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39. SHEAF COHOMOLOGY

Important special case. X C P" projective irreducible variety. I C S = k[xg,..., 2]
homogeneous ideal. For f € S homogeneous, Ox(Uy) = <§ [%]) . Oy is the sheaf of
0

regular functions on X.
If M is a graded S/I-module, then M is an Ox—module, defined on basic open sets by
ZT/[/(Uf) = (M ®g S[1/f])o. If M is f.g then M is a coherent Ox-module.

Examples. (1) 5/'7} = Ox (where S/I is thought of as an S/I-module, not an S—module.
Here M is ambiguous, but if you thought of it as an S—-module then you'd get the
sheaf i,Ox on P™.)

(2) I =7, ideal sheaf defining X (a sheaf on P").

39.1. Maps of Ox—modules.

Definition. A map (or morphism) ¢ : F — G is a map of Ox—modules if:

(1) F,G are Ox—modules.
(2) pu: F(U) — G(U) is a map of Ox(U)-modules for all open U C X.

Enough to give ¢y for U € B, a base of the topology.
Given ¢ : F — G a map of Ox—modules, define the kernel by

(ker p)(U) = ker(¢pv)

Check: ker ¢ is a sheaf and an Ox—module.

The #mage is more subtle. Define H'(U) := image(py).
Exercise. H' is a presheaf. Find an example of a ¢ such that H' is not a sheaf.

Let im(y) = sheafification of H’. Then im(y) is an Ox—module. Similarly, we may define
the cokernel of ¢

coker(y) = sheafification of the presheaf U — G(U)/im(py).

Key fact:

Flgn
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is an exact sequence of Ox—modules iff
Bp Qp
Fp gp HP

is exact as Oy ,—modules for all p € X.

Other key fact: If
0—F G- H—0

is a s.e.s of Ox—modules, then for all open U C X,

0 — F(U) 5 G(U) - H(U)

is exact as Ox(U)-modules.

One way to define cohomology of sheaves is to consider F +— F(X), the global sections
functor. This is left exact, so we can take the derived functor to get H'(X, F) for i > 0. For
i=0, H'(X,F) = F(X).

Assume X C P" is an irreducible projective variety and F is a coherent O x—module. Then

H(X,F) (also denoted H*(F)) satisfies

(1) HY(X,F) is a vector space over k, and is finite-dimensional. Its dimension is denoted
h'(X,F) or hi(F).

(2) H(X,F) = 0 for all i > dim(X) and for all i« < 0 (also equals zero for all i >
dim(supp(F)).

(3) Long exact sequence: if
0—F 2 G- H-—0

is a short exact sequence of coherent Ox—modules then

0 — HF) - HG) — H°(H) - HYF) — HYG) — - — HIO () - 0

1s exact.

(4) Let X =P, Ox(d) := S(d), S = k[zo, . .., 2n]. Then
(a) H°(Ox(d)) = S; (homogeneous forms of degree d), and therefore is 0 for d < 0.
(b) H(Ox(d)) =0,0 < i < n for all d.
(¢c) H'(Ox(—n — 1 — d)) = S} (the k-vector space dual of S;). In particular,
(

d)) =0 for d > —n.

(
H(Ox(
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Need exact sequences with degree 0 maps. Note:

(-) : (graded S/I —modules) — coherent Ox — modules

(for X C P™, I C S homogeneous ideal) is a functor. It is also exact, because localisation is.

One such exact sequence:

0—-I—-8S—S/I—0
gives

0—>IN—>(9pn—>(9X—>0
where technically Ox means i,Ox as an Oprn—module.
Example. X = P2 F € k[z,y, z] homogeneous of degree 3. C' = V(F) C P?, elliptic curve.

0—(F)—S—S/(F)—0.
Here, (F') = S(—3) because generator has degree 3. So
0—5(=3) L 85— S/(F)— 0.

This gives
0— Op2(—3) = Op2 — Oc — 0

(where O¢ really means i,O¢, a sheaf on P?).

Exercise: find h*(O¢). For next time, do it if deg(F) = d in general.
40. SERRE DUALITY
C C P? a curve V(F), deg(F) = d. Calculate h°(O¢), h'(O¢). S = k[, y, 2], I = (F).
0— S(—d) L 5= S/(F)—0

gives
0— Op2(—d>—>0p2 — OC — 0

or really the last term is i,O¢ where i : C — P2, We get

0 — H(Op2(~d)) — H*(Op2) — H*(Oc) — H'(Op(~d)) — - -
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We have from last time: H°(Opn(d)) = Sq; H(Opn(d)) =0, 0 < i < n, all d; H"(Opn(d)) =
S* 41 So HY(Op2(—d)) = 0 and H'(Op2(—d)) = 0, so H*(O¢) = k. The next part of the

long exact sequence gives
0 — H'(O¢) — H*(Op2(—d)) — H*(Op2) — H*(O¢) — 0

(since 3 > dim(P?)). Using H?*(Opz) = 0, we get H*(O¢) = 0 and H'(O¢) = H*(Op2(—d)) =
S* _14qa = Si_3- Therefore

w(oc) —am(si ) = (TG 7) = (151,

Definition. If F is coherent on X, X projective, then the Euler characteristic

X(F) =) (~1)h(F).

>0

Definition. The arithmetic genus of X C P" is
pa(X) = (=) (y(X) — 1),

If X is connected and dim(X) = 1 then x(Ox) = h°(Ox) — h'(Ox) =1 — K (Ox). So
Pa(X) = (=1)(1 = K1(Ox) — 1) = h'(Ox).

X C P" irreducible, smooth, projective. D = {(U;, f;)} Cartier divisor on X. We defined
Ox (D) with Ox(D)(U;) = %OX(UZ-) C k(X). Global sections:

s € H(Ox(D)) = Ox(D)(X). Let s; = s|y,. Let s; = g;/f; with g; € k(X) regular on U;.
Note that in k(X), sy =+ = s, = s € k(X).

H*(Ox(D)) = k(X)

S S;

for any 2. What is the image of this inclusion?
div(s)|y,+D = div(s;)+D on U;. This equals div(g;) |y, —div(f;)|v,+D. But D = div(f;)|v,
on U;. So since g; is regular on U; we get div(s)|y, + D > 0.

Therefore, H(Ox (D)) = L(D). So h’(Ox (D)) = {(D).
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40.1. Serre duality. Reference: Serre (FAC) 1955.
If X C PV smooth, irred, projective, dim(X) = n. Then

H"(Ox(D)) = H(Ox(Kx — D))*
for all 3.

Example. (1) X = smooth projective curve in P*. k = H°(Ox) = H'(Kx)*, (taking
D = 0 in the statement of Serre duality). [Notation: h‘(D) := h'(Ox(D)).] So
h'(Kx) =1 and h°(Ox) = 1.

(2) HY(Ox) = H'(Ox(Kx))* = L(Kx)*. So h'(Ox) = g, the genus of X (= {(Kx)).

Theorem. For X a smooth projective irreducible curve of genus g,
pa(X) =g=h'(Kx)=h'(Ox).

Theorem (Restatement of RR for curves). For X a smooth irreducible projective curve of
genus g, recall that the Riemann-Roch Theorem says (D) — (K — D) = deg(D) —g+1. So
hY(D) — h°(K — D) = h%(D) — h*(D) = x(Ox(D)) and

X(Ox(D)) = deg(D) + x(Ox).

Theorem (Serre). Let F be a coherent Ox-module for X projective. Then
(1) HY(X,F) is finite-dimensional over k.
(2) H(X,F(d)) =0 for alli > 0, for d >> 0.

40.2. Hilbert polynomials. F coherent on X projective C P".
Theorem. m +— x(F(m)) is a polynomial in m, denoted pr(m).

For m large enough, pr(m) = h°(F(m)).
If F = Ox then m — h°(Ox(m)) is polynomial for m >> 0. Let px(m) := xx(m). This

is a polynomial. For m >> 0, px(m) = h®(Ox(m)).
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