
EMTH211 Statistics Section - Notes
Richard Vale

September 25, 2014

1 Introduction
These notes will cover the last twelve lectures of the course. They are partially based on handwritten notes by
Dominic Lee. It is not intended that everything in these notes be examinable. Only the parts covered in class will be
examinable.

2 Data

2.1
We are going to apply linear algebra to the analysis of data. The data will consist of measurements of things. For
example, here is a table of pressure and temperature measurements for a boiler.

Temp (◦C) Pressure (kPa)
0 91
10 95
20 100
30 101
40 107
50 112

We could write the temperature and pressure measurements as vectors

x = (0, 10, 20, 30, 40, 50)

and
y = (91, 95, 100, 101, 107, 112).

We might be interested in the relation between x and y. For example, does increasing the temperature cause the
pressure to increase? Does increasing the pressure cause the temperature to increase? Can we predict one if we
know the other? When talking about the variables without speci�c data values in mind, we often write them in
lower case as x and y. In this example we might say x = temperature, y = pressure.

2.2
We might prefer to plot the (temperature, pressure) pairs as in Figure 1. This plot can help us to answer our questions.
What does it suggest to you?
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Figure 1: Running example: pressure versus temperature in a boiler.

3 Centering

3.1
If you have seen it before, you might remember that the ideal gas law says that pressure is proportional to temper-
ature. P ∝ T . This means that there is a constant α, a number, such that P = αT . Can we �nd the value of this
constant from our data? Well, 91 = α.0 and 95 = α.10 and so α = 95/10 = 91/0. There is no suitable value of α.
What went wrong?

3.2
In physics, temperature has to be measured in Kelvin, so 0◦C should really be written 273K and so on for the other
temperatures. If we didn’t know anything about temperature, this would be very confusing. The scale on which our
measurements are measured is a distraction. We can get rid of this distraction by centering our measurements. This
is done by subtracting the mean.

3.3 The Mean
The mean of a vector x = (x1, x2, . . . , xn) is

x =
1

n
(x1 + x2 + · · ·+ xn).

To centre a vector x, you subtract its mean from each entry. The centered version of x is given by

x− x1 = (x1 − x, . . . , xn − x)
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where 1 is a vector (1, 1, . . . , 1) of all ones. The notation x looks a bit like a vector, so it is better to write the mean
of x as x to remind us that it is a scalar. For the temperature and pressure vectors we have

x =
1

6
(0 + 10 + 20 + 30 + 40 + 50) = 25, y = 303/3 = 101

and
x− x1 = (−25,−15,−5, 5, 15, 25)

y − y1 = (−10,−6,−1, 0, 6, 11).

3.4
The mean of a centered vector is always zero because the sum of the entries of x− x1 is

n∑
i=1

(xi − x) =
n∑

i=1

xi −
n∑

i=1

x

= nx− nx
= 0.

3.5
The mean gives us a way to split Rn into two orthogonal subspaces

V = {x :
∑
i

xi = 0}

the space of all vectors which sum to zero, and

V ⊥ = span{1}

the space of all vectors which are scalar multiples of (1, 1, . . . , 1). Because every x can be written

x = (x− x1) + 1

we have Rn = V + V ⊥ and we can check that V and V ⊥ are orthogonal since for every x we have

〈x− x1,1〉 = 〈x,1〉 − x〈1,1〉

=

n∑
i=1

xi − xn

= 0

where 〈−,−〉 is the dot product, so Rn = V ⊕ V ⊥.

3.6
Why will it be helpful to centre the data? Going back to the ideal gas law, suppose we know that P ∝ T but we
cannot remember what scale should be used to measure temperature. Then we know that

P = α(T + T0) = αT + αT0

for some unknown T0. If we take the means of a collection of measurements satisfying this relationship, you can
check that

P = αT + αT0
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and so
P − P = αT + αT0 − αT − αT0 = α(T − T )

which is great because now we can work out α from the centered measurements without worrying about where the
zero is on our temperature (or pressure) scale! (But if you now try to �nd α, you will �nd that there is still no value
of α that �ts, because of measurement errors.)

4 Spread

4.1 Variance and standard deviation
The mean gives us a way to measure what the typical values of the variables are. We would also like to measure how
spread out the values are around the mean. This can be measured using the variance, which is de�ned by

var(x) =
1

n− 1

n∑
i=1

(xi − x)2.

In vector notation, this is
var(x) =

1

n− 1
||x− x1||2

where || · || is the Euclidean norm (another name for the 2–norm.)

4.2
The standard deviation is the square root of the variance

sd(x) =
1√
n− 1

||x− x1||.

The advantage of doing this is that the standard deviation is measured in the same units in which x is measured. So,
for example, the standard deviation of our temperature vector x comes out to be about 18.7◦C from the following
calculation:

x = (0, 10, 20, 30, 40, 50)

x− x1 = (−25,−15,−5, 5, 15, 25)

var(x) =
1

5
(252 + 152 + 52 + 52 + 152 + 252)

sd(x) =

√
1

5
(1750) ' 18.7

The standard deviation is also written as sx and the variance as s2x.

4.3 Aside: Why the Euclidean norm? Why n− 1?
The motivation behind the de�nition of the variance is that the squared length of the centered data is a measure of
how much the data varies from its centre, and dividing by n−1 enables us to calculate the variance “per dimension"
in the space V of Section 3.5. This all sounds plausible, but there are some natural questions. Why choose the 2–norm
to analyse data? Why not choose some other norm, for example, the 1–norm?
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4.4
Unfortunately, this question has no obvious answer. The original motivation behind the choice of the 2–norm was
that it made the calculations easier. It is also a natural thing to do if we agree that the mean is the right measure of
central tendency, because if x is a given vector then there is a unique number z which minimises

f(z) =

n∑
i=1

(z − xi)2

and that number must be the mean. [Exercise: prove this using calculus.] But this does not mean that we can’t get
other useful measures of centre and spread from other norms. In applications many di�erent notions are indeed
used. For example, MRI scans and jpeg images would not work if everybody used the 2–norm all the time! In this
course, we will gloss over this point and stick to the mean and standard deviation.

4.5
Another natural question is: why the n − 1? This has probably cropped up in your earlier statistics classes. The
usual answer is to do with getting an unbiased estimate of the variance in sampling theory. I don’t really want to
get into it here, but there really isn’t much motivation for it. If you are analysing real data and n is so small that it
makes a di�erence whether you use n or n− 1 in the denominator of the standard deviation, then you should think
carefully about whether you ought to be using statistics at all.

5 Correlation

5.1
Everything we have done so far has only been applied to one variable. We want to understand the relationship
between two variables. How does one vary when the other varies? Can we use one to predict the other?

5.2 Pearson correlation
If we have centered data vectors x and y then y is a perfect predictor of x when

y = αx

for some α, just like in the case of the ideal gas law. If the ideal gas law holds, then pressure determines temperature
and temperature determines pressure. In this case the vectors y and x are parallel. What about when y cannot be
used to predict x? This is less clear, but the opposite of being parallel is being orthogonal, so we will say that vectors
are uncorrelated when they are orthogonal.

5.3
The Pearson correlation measures how close two data vectors are to being parallel. It is simply de�ned as

cos(θ)

where
θ = ∠x− x1,y − y1

is the angle between the centered x and y. Because there is a formula for the dot product v ·w = ||v||||w|| cos(θ),
the Pearson correlation can also be written

corr(x,y) =
(x− x1) · (y − y1)
||x− x1||||y − y1||

The Pearson correlation is also just called the correlation and is written rxy .
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5.4
Example: for our temperature and pressure vectors we had

x− x1 = (−25,−15,−5, 5, 15, 25)

y − y1 = (−10,−6,−1, 0, 6, 11)
and so

rxy =
(−25)(−10) + (−15)(−6) + (−5)(−1) + (5)(0) + (15)(6) + (25)(11)√

252 + 152 + 52 + 52 + 152 + 252
√
102 + 62 + 12 + 02 + 62 + 112

=
710√

1750
√
294
' 0.9898.

Is this big or small? If you think about the de�nition, rxy = cos(θ), so the maximum possible value rxy can take is 1,
so this is a very high correlation. The centered temperature and pressure vectors are almost parallel, as we suspected
from the ideal gas law.

5.5 Covariance
The covariance of two vectors x and y is de�ned by

cov(x,y) =
1

n− 1
(x− x1) · (y − y1)

and also denoted cxy . Notice that cxx = s2x; the covariance of a vector with itself is the variance. The covariance
measures how x and y tend to vary with each other. Note that

rxy =
cxy
sxsy

because the n − 1’s cancel in the numerator and denominator. This is the formula for rxy that you often �nd in
statistics texts. It is quite painful to prove from this de�nition that −1 ≤ rxy ≤ 1. But with our de�nition, it is very
easy because rxy is the cosine of something and cosine always takes values between −1 and 1. Here is an example
of linear algebra making our lives easier!

5.6 Properties of the correlation
We can work out some important properties of Pearson correlation:

• Symmetry. Because (x− x1) · (y − y1) = (y − y1) · (x− x1), it follows that

corr(x,y) = corr(y,x).

• Location invariance. Adding a number to all the entries of a vector does not change the correlation of that
vector with any other vector. If we write x + b for the vector whose entries are xi + b, 1 ≤ i ≤ n, then
x+ b = x + b and so centering x + b gives the same result as centering x. Since the correlation is the angle
between the centered vectors, this does not change the correlation.

• Scale invariance. Multiplying a vector by a positive scalar does not change its angle with any other vector, so

corr(ax,y) = corr(x,y)

if a > 0. On the other hand, multiplying by a negative scalar �ips the sign of the correlation because
(ax− ax1) · (y − y1)
||ax− ax1||||y − y1||

= a
(x− x1) · (y − y1)
||a(x− x1)||||y − y1||

= a
(x− x1) · (y − y1)
|a|||x− x1||||y − y1||

=
a

|a|
corr(x,y)

and a/|a| = −1 if a < 0.
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These properties make sense because if correlation is to measure the extent of the association between x and y, it
should not matter in what units x and y are measured. Converting, for example, between cm and inches corresponds
to multiplication by a constant, and this does not change the correlation.

5.7 What does correlation measure?
Correlation measures the linear association between two variables. If one is a linear function of the other with a
positive slope, then the correlation between them will be 1. If the slope is negative, then the correlation will be −1.
But variables can be related in a non-linear way. For example, suppose we push a toy car at di�erent velocities and
measure its kinetic energy. Suppose v = (−2,−1, 0, 1, 2) is the vector of velocities and E = (4, 1, 0, 1, 4) is the
vector of corresponding energies. Then

cov(v,E) =
1

4
((−2)(4) + (−1)(1) + 0.0 + 1.1 + 2.4) = 0

and so
corr(v,E) = 0

and velocity and energy are uncorrelated, even though there is a perfect relationship between them: E = v2. The
situation is depicted in Figure 2. Correlation cannot be used to detect associations that are not linear, so you should
be careful about saying that there is no relationship between variables just because they happen to be uncorrelated.

Figure 2: Correlation only measures linear association. Here there is a clear pattern, but the correlation is zero.

6 Exercises for week 1
1. If x is a vector, what is the correlation between x and −x?

2. How does the covariance between two vectors change if one of them is multiplied by a scalar?

3. The number of birds observed at a feeder is observed to be smaller on cold days. Is the correlation between
number of birds and temperature positive, negative or zero?
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4. If more shipwrecks happen near the shore than further away, is the correlation between distance to the shore
and number of shipwrecks positive, negative or zero?

5. If 2.5cm = 1inch, how will the standard deviation of some measurements in cm change if we rewrite them in
inches? How will the variance of the measurements change?

6. We are investigating the relationship between time and the stock price of a company. Time is measured in
days since 1900. How will the correlation change if we choose to measure time in weeks since 1950 instead?

7. A person’s BMI is de�ned by

BMI =
mass(kg)

(height(m))2

If we measure the mass and BMI of a number of people who are all 1.8m tall, what will be the correlation
between mass and BMI?

8. If we measure the mass in pounds instead of kg, how will the correlation change?

9. If we take a group of people who all weigh 100kg and measure their BMI and height, will the correlation
between height and BMI be positive, negative or zero?

10. The Spearman correlation between two data vectors is de�ned to be the Pearson correlation applied to their
ranks. The rank of an entry is i if it is the ith smallest. So for example, if x = (1, 2, 5) and y = (−5,−1, 0)
then in y, rank(−5) = 1, rank(−1) = 2 and rank(0) = 3. Similarly, the ranks of x are (1, 2, 3) and so the
Spearman correlation between x and y is corr((1, 2, 3), (1, 2, 3)) = 1.

(a) What is the Pearson correlation between (1, 2, 3) and (1, 4, 9)?
(b) What is the Spearman correlation between (1, 2, 3) and (1, 4, 9)?
(c) If Pearson correlation measures linear association, what does Spearman correlation measure?

7 Simple linear regression

7.1
Correlation gives us one way to measure the strength of a linear relationship. Now we want to �nd an equation for
the linear relationship. There is seldom an exact linear relationship, but we can �nd an equation which is close to
exact in some sense. Finding such an equation is called linear regression. If we have just two variables x and y it is
called “simple". This type of linear regression can’t go too badly wrong because you can always plot y and x to see
what is happening. If we have more than two variables, it is called “multiple" regression. This can go wrong in all
sorts of interesting ways, which we will discuss next week.

7.2 Simple linear regression
If we have vectors x and y of measurements with n entries, we can look for a relationship of the form

yi = b0 + b1xi + ei

where ei is an error term. As a vector equation, this would be written

y = X

[
b0
b1

]
+ e

where
X =

[
1 x

]
is a n× 2 matrix with columns 1 and x and e is the vector (e1, e2, . . . , en). We don’t know what e is, but we want
to make it as small as possible. To minimise the Euclidean norm of e, we can use the method of least squares.
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7.3 Least squares (review)
Hopefully you recall the method of least squares from earlier in the course. If not, we work through it again. The
vector (b0, b1)T that we seek is the best approximation to y in the subspace spanned by the columns of X . We can
�nd this vector by projecting y orthogonally onto the span of the columns of X . Let ŷ be the orthogonal projection
of y onto the span of the columns of x. An orthonormal basis for the span of the columns of x is

{ x− x1
||x− x1||

,
1

||1||
}

and so
ŷ =

(
y · (x− x1)
||x− x1||

)
(x− x1)
||x− x1||

+

(
y · 1
||1||

)
1

||1||
Rearranging gives

ŷ =
y · (x− x1)
||x− x1||2

x+

(
y · 1
||1||2

− xy · (x− x1)
||x− x1||2

)
1

from which we can read o� the values of b0 and b1 which give the least squares solution.

b1 =
y · (x− x1)
||x− x1||2

b0 =
y · 1
||1||2

− xy · (x− x1)
||x− x1||2

= y − b1x

Usually you should use software to calculate these, of course. For hand calculation, it is better to �nd b1 �rst and
then plug in to the formula for b0 using x and y.

7.4 Example
Let us work through this for the temperature and pressure data. We have

x = (0, 10, 20, 30, 40, 50), x− x1 = (−25,−15,−5, 5, 15.25)

y = (91, 95, 100, 101, 107, 112), y·(x−x1) = −25(91)+−15(95)+−5(100)+5(101)+15(107)+25(112) = 710

b1 =
y · (x− x1)
||x− x1||2

=
710

1750
' 0.41

b0 = y − b1x = 101− 710

1750
× 25 ' 90.9

and so our least squares equation is
ŷ = 90.9 + 0.406x.

In statistics, it is common to put a hat over a number which has been estimated from the data. So it would be more
usual to write

b̂0 = 90.9, b̂1 = 0.406

Does our solution look sensible? We can check by tabulating the values of temperature, pressure, and predicted
pressure using the equation. See Table 1. It certainly looks like a linear relationship is a good �t. If we were unaware
of the ideal gas law, this could be a really useful thing to know. We can use our new equation to predict pressure
from temperature, without having to do an experiment.

We can also add the line of best �t to Figure 1 to get Figure 3.
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Temp (◦C) xi Pressure (kPa) yi b̂0 + b̂1xi
0 91 90.9
10 95 94.9
20 100 99.0
30 101 103
40 107 107
50 112 111

Table 1: Temperature, pressure, and predicted pressure

Figure 3: Running example: pressure versus temperature in a boiler.
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7.5 The slope of the regression line

The slope of the regression line b̂1 can be expressed in terms of the correlation. Since 1 ⊥ x− x1, we have

b̂1 =
y · (x− x1)
||x− x1||2

=
(y − y1) · (x− x1)
||x− x1||2

= rxy
sy
sx

This neat result enables us to see that the slope of the regression line is just the correlation times the standard
deviation of y divided by the standard deviation of x. It makes sense, because if you think about a plot of y versus
x, when x gets more spread out, the slope should get shallower, but when y gets more spread out, the slope should
get steeper. The slope is not de�ned if sx = 0; in this case the regression line would be vertical.

7.6 What if we swap x and y?
Something strange immediately appears: if we swapped the roles of x and y, the slope would be di�erent! But the
regression line was supposed to describe the relationship between x and y. What is going on? The answer is that
the regression line should be thought of as an equation for predicting y given x. It is the best one, in the sense that
it minimises the sum of squared errors in the predictions of y. The line that minimises the sum of squared errors in
the predictions of x from y is a di�erent line in general.

7.7 Why least squares?
Again, we are faced with the question of why we should minimise the sum of squares. Again, the answer is really
because it makes the mathematics easier. As G. Udny Yule said in 1897: “This is done solely for the convenience of
analysis." He was probably the last statistics writer who was honest about this! One bene�t, however, of using least
squares is that it allows us to make a lot of statistical tests, if we make assumptions about how the true y values
deviate from the predicted y values. There are alternatives to least squares for �nding a regression line. One early
writer, Boscovich, minimised the sum of absolute errors (the L1 norm.) Galton, who coined the term regression, used
a line which passed through the medians of the x and y–values. Shortly before the advent of computers, Tukey
advocated a similar method for drawing lines of best �t by eye.

7.8 Goodness of �t
In our example, the regression line looked pretty good, in the sense of being close to the data points. We feel
intuitively that it will not be so good if it is further away from the data points. How can we measure this? A natural
way is to look at the vector of predicted values, the third column of Table 1 in our example, and compare it with the
second column, the vector of actual values. We want these to coincide. They will coincide if and only if

||ŷ − y|| = 0

but we don’t want to take ||ŷ−y||2 as a measure of goodness of �t because it increases if there are more data points
and also increases if the y–values are more spread out. We can get rid of the problem of having too many dimensions
by dividing by n − 1 and get rid of the problem of the spread of the y–values by dividing by s2y , so we de�ne the
measure of goodness of �t as

R2 = 1− ||ŷ − y||2

||y − y1||2

instead. This gets bigger when the model �ts better, and it always lies between 0 and 1. Indeed, because ŷ is the
orthogonal projection of y onto the plane spanned by x and 1, by translation we see that ŷ − y1 is the orthogonal
projection of y − y1 onto the plane spanned by x and 1. By the pythagorean theorem, we have

||y − y1||2 = ||ŷ − y1||2 + ||ŷ − y||2.
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Dividing by ||ŷ − y1||2 and rearranging gives

1− ||ŷ − y||2

||y − y1||2
=
||ŷ − y1||2

||y − y1||2

which is certainly greater than or equal to zero and cannot exceed 1 because the projection of a vector is always
shorter than the vector itself.

7.9 R-squared
The name might give us a clue about another way of writing R2. First, notice that the mean of ŷ is just y. This is
because the mean of b̂0 + b̂1x is b̂0 + b̂1x = y. Therefore, R2 is equal to s2ŷ/s2y . But

s2ŷ = s2
b̂0+b̂1x

= b̂21s
2
x = r2xy

s2y
s2x
s2x

and so
R2 = r2xy

which is just the square of the correlation coe�cient. This immediately leads to the question: why did we de�ne R2

in a complicated way and why is there a capital R? The reason is because when we have more than one x–variable
next week, there will be no single correlation coe�cient, but the de�nition R2 = 1− ||ŷ−y||2

||y−y1||2 = ||ŷ−y1||2
||y−y1||2 will still

make sense and the geometric argument which we made will still be correct.

7.10 Regression in statistics
So far, we have used regression as a way of �nding an equation to predict y given x, taking into account errors in
measuring y. Statisticians understand regression in quite a di�erent way. It is important to understand the statistical
way, otherwise you will not be able to understand the output of software which performs regression.

7.11
In statistics, it is assumed that there is a large population of all possible pairs of (x, y) values and the data (xi, yi) is
a random sample from this population of size n. In the large population, the equation

y = b0 + b1x+ e

holds, where e is a random error term which is di�erent for every (x, y) pair. Using least squares, an equation of the
form

ŷi = b̂0 + b̂1xi

is obtained from the data. It is desired to learn about the true b0 and b1 using the �tted b̂0 and b̂1.

7.12 Assumptions
To make any progress, some assumptions have to be made about the errors e. It is assumed that the errors are
independent and follow a normal distribution with mean 0 and constant variance σ2. Hopefully you have seen the
normal distribution in earlier studies. If this assumption about the errors is true, then it is possible to make statements
about how much b̂1 deviates from b1 by constructing a con�dence interval.
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7.13 Con�dence intervals
A 100(1− α)% con�dence interval for b1 is an interval constructed from a sample of values of (x, y) in such a way
that, if we took many samples and constructed an interval for each one, the proportion of such intervals which
contained the true b1 would be (1− α). The question which a con�dence interval answers is: “How certain are we
that y really depends on x, given that it either depends on x linearly or not at all, and that the assumptions of Section
7.12 are true?". If the con�dence interval does not contain 0, then it is plausible that b1 6= 0, otherwise not. The idea
is illustrated in Figure 4.

Figure 4: Every time we take a sample from the population, we get a di�erent regression line. We can use a con�dence
interval to describe the range of slopes which these lines are likely to have.

7.14
It can be shown using statistics that a 100(1− α)% con�dence interval for b1 is

b̂1 ± t∗n−2(1− α/2)SE(̂b1)

where

SE(̂b1) =

√
1

n− 2

||ŷ − y||2
||x− x1||2

and t∗n−2(1 − α/2) is the number such that the area under the density function for the t–distribution with n −
2 degrees of freedom and above the point t∗n−2(1 − α/2) is 1 − α/2. (The t–distribution looks like the normal
distribution but has fatter tails. You can get this number from Matlab by typing tinv(1-alpha/2, n-2).) For
example, if α = 0.95 and n = 8 then you should get t∗n−2(1−α/2) = 2.4469. You can also get these numbers from
look-up tables.

7.15 Prediction intervals
Before working through an example, there is another application of the t–distribution to prediction intervals. If x∗
is a value of x, which may or may not be one of the xi in the data, and (x∗, y∗) is a point in the population (where

13



y∗ is some value which is unknown) then the predicted value of y∗ is ŷ∗ = b̂0 + b̂1x
∗. A 100(1 − α)% prediction

interval for y∗ is an interval such that, if the regression assumptions are true, then if we took many samples of the
(x, y) and built a model and constructed a prediction interval from each one, a proportion (1−α) of these intervals
would contain the true y∗.

7.16
Given x∗, a 100(1− α)% prediction interval for y∗ is

ŷ∗ ± t∗n−2(1− α/2)
||ŷ − y||√
n− 2

√
1 +

1

n
+

(x∗ − x)2
||x− x1||2

Notice that the prediction interval becomes wider as x∗ is further from x. In predictive modelling in general, you
should be wary about making predictions outside the range of x–values for which you have data. This is called
extrapolation. A good example is Hooke’s Law from physics (force exerted by a spring is proportional to extension)
which is linear up to the elastic limit, but then breaks down.

7.17 Examples
For the temperature and pressure example again, we have n = 6 and

y − ŷ = (91− 90.9, 95− 95, 100− 99.0, 101− 103, 107− 107, 112− 111) = (0.1, 0, 1,−2, 0, 1)

These numbers (called errors or residuals) should add up to zero. The reason why they don’t in this case is rounding
error. We then have

||y − ŷ||2 = 0.12 + 02 + 12 + 22 + 02 + 12 = 6.01.

We also have ||x− x1||2 = 1750 and so

SE(̂b1) =

√
1

4

6.01

1750
= 0.029.

From software we �nd that t4(0.975) ' 2.78. A 95% con�dence interval for b1 is therefore

b̂1 ± 2.78× 0.029 = 0.406± 0.08 = (0.33, 0.49).

The interpretation is that we are very con�dent that the values of pressure change when the temperature changes;
the variation of pressure with temperature which we observed in the data is probably not just a random accident.
This does not mean that changing the temperature causes the pressure to change. They might both be caused by
some common third thing.

7.18
Suppose we want to predict the pressure if the temperature is x∗ = 24◦C. Then a 95% prediction interval is

(91 + 0.41× 24)± 2.78

√
6.01

4

√
1 +

1

6
+ (24− 25)2/1750 = 100.84± 2.78× 1.249× 1.08 = 100.84± 3.75

or
(97◦C, 105◦C).

The interval is pretty wide, which re�ects the fact that we have a very small amount of data to go on.
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8 Exercises for week 2
1. What is the slope of the regression line if we regress y−y

sy
on x−x

sx
?

2. If a ⊥ v −w and
||w||2 + ||v −w||2 = ||v||2

show that
||w − a||2 + ||v −w||2 = ||v − a||2.

Convince yourself that this is true geometrically in R2 and R3.

3. De�ne an interval for a regression slope b1 as follows. Generate a random number u between 0 and 1. If
u < 0.95, take the interval (−∞,∞). Otherwise take the empty interval. Explain why this is a 95% con�dence
interval for b1.

4. Suppose that when we regress y = height (in cm) on x = foot length (in cm) for a group of people, the slope
is 0.9. What is the slope if we choose to re-express foot length in mm?

5. The lengths in cm and venom strength in ppm for six spiders of a particular species are given by

length 2 2.5 2.6 4.8 5.0 5.1
venom 10 9.6 9.0 12 11 10.7

(a) What is the R2 if we regress venom on length?
(b) Does venom tend to increase with length, or decrease with length?
(c) Make a plot of the data. What do you notice?
(d) For this species of spider, females tend to be about twice the size of males. Does venom tend to increase

or decrease with length for male spiders? For female spiders?

6. Calculate XTX where X is the matrix with columns 1 and x where 1,x ∈ Rn.

7. Let x = (0, 1, 1), y = (0,−1, 1).

(a) Find the least squares solution to y = b0 + b1x.
(b) Show that there is more than one choice of (b0, b1) which minimises

3∑
i=1

|yi − (b0 + b1xi)|.

(Hint: drawing a picture will probably help. In fact, there are in�nitely many solutions. The uniqueness
of the least squares solution is one reason for preferring least squares to other approaches.)

8. Suppose we want to �nd a and b in a relationship of the form y = axb, where x and y are positive quantities
which we have measured, subject to some error. Since log(y) = log(a)+ b log(x), it is common to plot log(y)
versus log(x) and then look for a line of best �t. We could use least squares to do this, and get a con�dence
interval for b and prediction intervals for new values of x. Explain why these intervals will probably not be
correct.
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9 Multiple Regression

9.1
Multiple regression is also just called “linear regression". It is the generalisation of simple linear regression to the
situation in which there are several x–variables and the model becomes

y = b0 + b1x1 + b2x2 + · · ·+ bpxp + e.

Here, p is the number of predictors xi. Instead of a line, we seek a hyperplane which is as close as possible to
containing the points (x1, x2, . . . , xp, y). In the case p = 2, this can be visualised as a plane in R3.

9.2 The Normal Equations
As in the case where p = 1, we seek the least squares solution to the system

y = Xb

where
X =

[
1 x1 · · · xp

]
is a n× (p+ 1) matrix called the model matrix. The least squares solution b satis�es

ŷ = Xb

where ŷ is the orthogonal projection of y onto the column space of X . Since ŷ must satisfy

ŷ · xi = y · xi

for all i, and
ŷ · 1 = y · 1

we must have
XTy = XT ŷ = XTXb

and from this it follows that if XTX is invertible, then

b = (XTX)−1XTy

is the solution. In real life, b is never computed by �nding the inverse of XTX but it can be computed in more
numerically stable ways, for example by using the QR factorisation. In statistics, the equation

XT ŷ = XTXb

is called the normal equations.

9.3 R2

The measure of goodness-of-�t R2 is de�ned in the same way as for simple linear regression, but it can no longer
be interpreted as the square of the correlation coe�cient. It is a popular way of describing the quality of the �t, but
is not necessarily useful.
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9.4 Con�dence intervals for bi
A 100(1− α)% con�dence interval for bi is given by

b̂i ± t∗n−p−1(1− α/2)SE(̂bi)

where
SE(̂bi) =

√
1

n− p− 1
||ŷ − y||2(XTX)−1ii

Here, (XTX)−1ii denotes the ith diagonal entry of (XTX)−1. This is quite similar to the formula in the p = 1 case
except for the n− p− 1 where we had n− 2 before. Just like in the p = 1 case, the con�dence interval is only valid
if the assumptions that the regression errors and independent, normally distributed and have constant variance are
met.

9.5 Ceteris Paribus
The interpretation of the con�dence interval is similar to the case of simple linear regression. We look for whether
there is evidence that bi 6= 0 and interpret this as indicating that knowing xi tells us something about y when all
other xj are kept equal. This “all other things being equal" (often called “ceteris paribus") is very important and
is often overlooked. For example, suppose y is the salary of a cricketer, x1 is the number of years they have been
playing and x2 is the number of runs they have scored in their career. If

y = b0 + b1x1 + b2x2

we expect y to increase as x1 increases and also increase as x2 increases. However, we would not expect b1 and b2
to both be positive. Why? If x2 is �xed, then among cricketers with the same number of runs, we would expect those
who have been playing longer to have lower salaries, because they took longer to score their runs. So we would
actually expect b1 < 0, b2 > 0.

9.6 Pitfalls in multiple regression
The “all other things being equal" problem is not the only thing which can go wrong when interpreting the results
of a multiple regression. Here are some other common ones.

• Non-linearity. In the p = 1 case, you can always plot the data and decide whether it looks curved. For
p > 2, this is impossible, which makes it more di�cult to tell whether a linear relationship �ts your data well
or not. This leads to the careless over-use of linear regression, both in hard and soft sciences.

• Speci�cation bias. This is a name for the problem of an important variable being left out of your model.
For example, a story is told by Mosteller and Tukey of a regression done to try to �nd out the factors which
determined the success of bombing in World War II. It was found that the number of enemy �ghters had
a positive coe�cient, i.e. the more �ghters encountered, the better the performance of the bombers. This
probably happened because there were more �ghters when there were fewer clouds, which also made bombing
more accurate. But cloud cover was not included in the model.

• Kitchen-sink regression. In the social sciences, it is common to throw as many variables as possible into a
regression model to “control" for their e�ects. When irrelevant variables are included, this leads to problems in
interpreting the regression coe�cients and can make predictions less accurate. For example, an American data
mining company tried to predict the success of teams in the 2012 Olympics by using a regression involving
dozens of variables including religion and export volume. They failed completely.

On the other hand, regression can work well if done correctly. A famous example is the analysis of wine prices by
the economist Orley Ashenfelter, who was able to correctly predict the quality of 1989 Bordeaux wines, even though
his model was regarded with scorn by wine experts. Usually, however, linear regression is not the best approach
for prediction, although it has the advantage that it is simple and the prediction equation which it produces is
understandable and can be easily computed.
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9.7 Instability
You might be wondering what happens when XTX is singular. Then it cannot be inverted. It is actually very rare
that XTX is exactly singular, but it can be ill-conditioned and this causes various problems, sometimes known
as instability. It turns out that XTX is singular exactly when the columns of X are linearly dependent (called
multicollinearity). When the columns of X are close to being linearly dependent, the regression is unstable.

9.8
Instability is important because it can a�ect the values of the regression coe�cients and make the results di�cult to
interpret. For example, if there is approximate linear dependence, say x2 ' 2x1, then we might have

y = b0 + b1x1 + b2x2 ' b0 + (b1 − 3)x1 + (b2 + 1.5)x2 ' · · ·

and the regression coe�cients are likely to be numerically unstable. They might have huge standard errors or
take unreasonable values, depending on the software used. Di�erent �elds have di�erent ways of assessing multi-
collinearity. A simple one, used in econometrics, is the variance in�ation factor or VIF. The VIF of a variable xi in a
regression is

V IF (xi) =
1

1−R2
i|j

where R2
i|j is the R2 from a regression of xi on {xj : j 6= i}. A large value of VIF is evidence of multicollinearity

(why?) Alternative measures of multicollinearity are based on the determinant of XTX ; when det(XTX) is close
to zero, XTX is close to being singular. There is no single measure of multicollinearity which is in universal use.

10 Example
Let us do a small example in Matlab. (The calculations for multiple regression become tedious if done by hand.) The
data consist of femur lengths x1 in m, brain case volume x2 in ml, and estimated spine length y in m, for seven
stegosaurus skeletons in more-or-less complete condition. We are interested in how spine length varies with femur
length and brain case volume. First we input the data:

x1 = [1.03, 0.99, 1.08, 1.2, 0.94, 0.97, 1.01]
x2 = [15, 15.1, 14, 13.2, 10.9, 14.1, 14.5]
y = [9.2, 9.5, 8.4, 12, 9.3, 7.7, 10]

Now plot the data:

scatter3(x1, x2, y, ’black’, ’fill’)

and now turn on 3d rotation so you can drag the plot with the mouse:

rotate3d()

Create the model matrix X

X = [ones(7,1) x1’ x2’]

Find the least squares solution to the normal equations

b = linsolve(X’ * X, X’ * y’)
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Our regression equation is
y = 0.81 + 11.2x1 − 0.21x2.

We can add the plane to the plot.

[XX,YY] = meshgrid(0.8:0.01:1.2, 7:0.1:16);
ZZ = b(1)+b(2).*XX + b(3).*YY;
hold on
s = surf(XX,YY,ZZ)
set(s, ’facecolor’, ’none’);

Figure 5: Least squares plane in Matlab

Let us predict the length of a stegosaurus with a 10 ml brain and a femur length of 0.8 m.

[1 0.8 15] * b

The answer is 6.6 m. We haven’t covered prediction intervals for multiple regression, but just like in the one-
variable case, with so few data points the prediction interval for this observation is pretty wide. We would, however,
like to use our formula to get con�dence intervals for the regression coe�cients. The residual sum of squares
||ŷ − y||2 is given by

RSS = sum((X*b - y’).^2)

which is 5.26. We also need the diagonal entries of (XTX)−1 which we get from

xx = diag(inv(X’ * X))

We compute a 95% con�dence interval for b1, which is b(2) in the Matlab output because Matlab starts indexing
vectors at 1, so our (b0, b2, b2) is Matlab’s [b(0) b(1) b(2)].
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b(2) + tinv(0.975, 7-2) * [-1, 1] .* sqrt(1/(7-2-1) * RSS * xx(2))

The 95% con�dence interval for b1 is
(−2.78, 25.16)

which is very wide. Similarly, we use xx(3) to get a con�dence interval for b2 of

(−1, 0.63)

at the 95% level. Notice that taking 95% as a con�dence level is quite arbitrary. This leads to the question: which
con�dence level would lead us to believe that y did vary with x1 or x2? This is the con�dence level at which 0 lies
just outside the con�dence interval. Twice the corresponding α is called the p–value. We can calculate it as follows:

2 * (1 - tcdf(b(2)/sqrt(1/(7-2-1) * RSS * xx(2)), 7-2-1))

and get 0.108. The interpretation of this is that if the points were really random scatter and the regression
assumptions were true, the probability of seeing a value of b1 at least as extreme as observed is a little more than 1
in 10, so not very unlikely. Similarly, you can do the p–value for b2 and should get 0.555; above 50%. This is useful
information; if anything is a signi�cant predictor of y, it is femur length and not brain case size.

But these p–values and con�dence intervals are misleading if the regression is unstable, so we should check that
by �nding the R2 if we regress x1 on x2. This is just the square of the correlation.

corr([x1’ x2’]).^2

The (1, 2)–entry of this matrix of correlations is the correlation between x1 and x2. It is 0.01, corresponding
to a VIF of just above 1. This means that we do not have to worry about instability. Nevertheless, the regression is
useless because we have no compelling evidence of a pattern in the data, as opposed to random scatter.

Note that when calculating con�dence intervals and p–values we should also check the regression assumptions
of independent, normally-distributed errors with constant variance. Usually this is done by making plots of the
residuals yi − ŷi. Again, with only seven data points, this is rather pointless as there is almost no way we could
discover evidence of non-normality, even if it was present.

11 Exercises for week 3
1. If we replace xi by axi in a multiple regression, how does b̂i change? How does SE(̂bi) change?

2. A genetics researcher has data from 20 patients in which 500 genes are present or absent and wants to regress
height on the variables x1, x2, . . . , x500 where xi = 1 if gene i is present and xi = 0 if gene i is absent. Can
this be done using linear regression? Why or why not?

3. Revisiting the spider data, we add a dummy variable which is 0 for male spiders and 1 for females.

length 2 2.5 2.6 4.8 5.0 5.1
venom 10 9.6 9.0 12 11 10.7

sex 0 0 0 1 1 1

(a) Work out the regression coe�cient for the length variable when y = venom is regressed on x1 = length
and x2 = sex. Does venom tend to increase or decrease with length?

(b) Find the VIF for the length variable. (Hint: you only need to calculate the correlation between length and
sex for this.)

4. For p = 1, check that the formula for SE(̂b1) reduces to the formula from simple linear regression.
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5. Let A be a subspace of Rn, let a ∈ A and let y ∈ Rn. Let ŷ be the orthogonal projection of y onto A. Explain
why y · a = ŷ · a. Hint: write y = ŷ + z with z ∈ A⊥.

6. An economist wants to compute a regression model for predicting a country’s exports using the variables x1 =
2006 GDP, x2 = 2007 GDP and x3 = 2008 GDP. What problem is this likely to run into? (Note: the problem
can be overcome using modi�ed versions of linear regression.)

7. Let y be the number of weightlifting medals won by a country in the olympics. If you regress y on a set of
variables which includes the maximum weight lifted by an athlete from that country (in lb) and the maximum
weight lifted by an athlete from that country (in kg), what will happen? Would your answer be di�erent if you
used software to do the regression?

8. A linear regression is used to assess 10 di�erent mixtures of concrete. The amounts of water (kg), gypsum (kg)
and ash (kg) are the predictors and the breaking strength (N) is the y–variable. A 95% con�dence interval for
the coe�cient of gypsum is (−0.2, 4.8). Carefully explain exactly what this interval means.

9. Sometimes it is not desirable to have an intercept in a regression.

(a) Let x and y be vectors of data of length n. Find the value of b which minimises

n∑
i=1

(yi − bxi)2.

(b) Suppose we have several x–variables, x1, . . . , xp. Write down a matrix equation for the value of b =
(b1, . . . , bp) which minimises

n∑
i=1

(yi − b1x1i − b2x2i − · · · − bpxpi)2.
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