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Abstract

Each New Zealand business reports its expenses and sales income when it files a
GST (Goods and Services Tax) return. Economic forces cause the joint distribution
of expenses and sales to change over time. The purpose of this work is to visualise
these changes.

A six-parameter model of the joint distribution of GST expenses and sales is
constructed using a copula. We explain this model and an associated visualisation.
This visualisation allows us to track changes in the economy over the last twelve
years and identify key events such as the Global Financial Crisis. It also enables us
to see a clear business cycle, with the distribution of expenses and sales returning
to an earlier state after some time.

This analysis shows that we can get new insights by considering the shape of
the joint distribution of expenses and sales, rather than just using the aggregate
amount of expenses and sales themselves.

1 Introduction

Goods and Services Tax (GST) is a tax on most goods and services in New Zealand.
All New Zealand businesses with an annual turnover (sales and income) exceeding
$60,000 are required to register for GST and to file a GST return. Many smaller
businesses also choose to be registered for GST. The GST return must be filed on
either a monthly, two-monthly, or six-monthly basis. Usually only small businesses
are allowed to file on a six-monthly basis. Every business must declare its sales
and income and its purchases and expenses on its GST returns. These returns are
therefore a source of information about how much money is being made by New
Zealand businesses and are one of the sources of information used by Statistics New
Zealand to calculate the Gross Domestic Product [6].

In this paper, we refer to sales and income as sales and purchases and expenses
as erpenses. Since each business must declare both of these on its GST return,



we can consider the joint distribution of sales and expenses for all GST filers in a
particular month. The aim of this paper is to perform an exploratory analysis of
this joint distribution and visualise how it varies from month to month.

2 The Joint Distribution of Sales and Expenses

Figure 1 shows two scatterplots of log(sales) versus log(expenses) for March 2011,
where logs have been taken to base 10. Businesses with sales or expenses under $1
have been omitted from the plot. The bulk of the data form a teardrop shape with
pronounced upper tail dependency.
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Figure 1: Scatterplot (left) and smoothed scatterplot (right) of log(sales) and
log(expenses) for March 2011 GST returns. The dotted line is y = x.

The smoothed scatterplot in the right-hand half of Figure 1, produced with the
smoothScatter function in the statistical package R [3], reveals that the bulk of
the probability mass lies above the line y = x, which is to be expected since most
businesses make a profit.

The goal of modelling the joint distribution is dimension reduction rather than
prediction. We wish to find a distribution with a small number of parameters which
provides an adequate fit to the shape of Figure 1 and then to examine the time
series of the fitted parameters.

2.1 Copulas

Copulas are a standard tool for modelling joint distributions. A bivariate copula
is simply a distribution function on the unit square whose marginals are uniform.
Sklar’s Theorem [5] states that every joint distribution function F(z,y) can be writ-
ten as F(x,y) = C(Fx(z), Fy(y)) where Fx and Fy are the marginal distribution
functions of F' and C'is a copula. Consequently, a common way of fitting a joint
distribution to a random vector (X,Y) is to first fit marginal distributions Fy and
Fy and then to fit a copula to (Fx(X), Fy(Y)).



There is not always much to be gained by using copulas, but many families
of copulas can be fitted by software, making them a convenient choice for data
analysis.

Figure 2 shows kernel density estimates for the marginal distributions of the data
in Figure 1. These look roughly normal, although they are leptokurtic (meaning
that they have higher peaks and heavier tails than the normal.) We choose to
model them as normal, so that sales and expenses follow a lognormal distribution,
and we use a copula to describe their dependence structure.
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Figure 2: Marginal distributions of log(sales) (solid) and log(expenses) (dotted) for
March 2011 GST returns.

A suitable copula is the Joe copula of H. Joe [2] fitted using the VineCopula R
package [4]. The Joe copula depends on a parameter # > 1 and has the distribution
function

Clz,y) =¢ (o) +¢y), O0<zy<l
where
o(t) = —log(1 — (1 —1)°). (1)

For our purposes, this copula has to be flipped through 180°.

The Joe copula is symmetric about the line y = z, but we have seen in Figure 1
that the distribution of sales and expenses is not symmetric. The model therefore
includes an additional parameter m which is the proportion of filers whose sales
exceed their expenses. We now describe the model in full.

2.2 The Model

The model has six parameters.
® /i, lts, the mean log-expenses and log-sales respectively.

® 0., 0, the standard deviation of the log-expenses and log-sales.



e 0, the parameter of the fitted Joe copula.

e 7, the proportion of filers whose sales exceed their expenses.

The model is fitted in two stages. First, the parameters ., o, ps,0s and 7 are
estimated from the data. Then the fitted marginal distribution functions are used
to transform the data to the unit square, as described in Section 2.1, and a Joe
copula is fitted to the result using maximum likelihood estimation.

2.3 Quality of the Fit

Figure 3 shows smoothed scatterplots of the March 2011 data together with an
equal number of simulated points from the fitted model. The fitted distribution
is the right shape and has the bulk of its probability mass in the right place, but
it fails to capture the variability seen in the real data. Various methods exist for
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Figure 3: Smoothed scatterplot of March 2011 GST data (left) and 380610 points
simulated from the fitted model (right). The dotted line is y = z.

evaluating the quality of the fit, including two-dimensional histograms and plots of
the lambda function [1, Section 3]. The performance of the fitting procedure itself
can be assessed by simulating from the model and then fitting the model to the
simulated data, to see whether the parameters used for simulation can be recovered.
This was done 1000 times for the model with the following parameters (which are
typical values for the GST expenses/sales data)

(e, O, s, 05,0, 1) = (4.2,0.87,4.5,0.85,3.9,0.78) (2)

and the resulting relative errors are plotted in Figure 4. The most severe bias is
in the estimate of #. Experiments with different values in (2) indicate that the
estimate of 6 tends to be biased upwards by about +3%. This is not surprising as
there is no reason why the fitting procedure of Section 2.2 would yield an unbiased
estimator. Although the issues with the model fit mean that this model is unlikely
to be useful for prediction, they do not imply that the model is of no use as a
dimension reduction technique.
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Figure 4: Boxplots of relative errors in 1000 estimates of the model parameters
using data simulated from the model with parameters given by (2).

2.4 Interpretation of #

It is useful to consider the meaning of the parameter ¢ as it is the only parameter
whose interpretation is not obvious. Recall that # > 1. When 6 = 1, the Joe copula
(1) reduces to the independence copula C(x,y) = xy, and there is no relationship
between expenses and sales. As 8 — oo, the distribution becomes more and more
concentrated along the line y = x. We can therefore view # as a generalised measure
of correlation between sales and expenses. Indeed, by [1, (3)], there is a one-to-
one correspondence between 0 and Kendall’s tau, which is a measure of correlation
based on the ranks of the observations in two data sets.

When communicating with stakeholders, we refer to 8 as the shape of the dis-
tribution.

3 Visualisation

The model was fitted to the GST data from each month from January 2000 to
July 2013, giving time series for the six parameters. Since p. and p, increase over
time, these were adjusted for inflation by subtracting the log of the Consumer Price
Index. The six time series exhibit very strong seasonality due to the various filing
frequencies, as explained in Section 1. This seasonality was removed by taking a
twelve-point moving average.

In order to visualise the resulting six-dimensional time series, principal compo-
nent analysis was used to choose a suitable three-dimensional projection. The first
two principal components can be plotted, with shading used to indicate the third



principal component. Together, these components account for 96% of the variance
in the fitted parameters. The first two principal components account for 83% of
the variance.

The resulting visualisation is shown in Figure 5. The most obvious feature of
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Figure 5: Principal components of the time series of the fitted model parameters,
found using the R prcomp command. Some dates are indicated on the plot. The
darkness of the line represents the third principal component. The arrows indicate
directions in which pus, ., 0 and 7 are increasing.

the plot is the vertical movement of the line between mid-2008 and mid-2009, which
roughly corresponds to the recession caused by the Global Financial Crisis of 2007-
2008. It is appealing that the line “turns the corner” in mid-2009. Notice that the
line crosses over itself in early 2012 (although the third principal component has
changed) which might be interpreted as the beginning of a new business cycle.

To present the model to stakeholders, an animated and coloured version of
Figure 5 was created using the htmlb <canvas> element. JavaScript controls enable
the viewer to pause and reverse the animation and to change the speed.

4 Conclusion

Even using a simple model, an interesting picture of the New Zealand economy
can be obtained. The key idea is to introduce a statistic 8 which describes the



shape of the expenses/sales distribution. Identifying such statistics can add to our
understanding and allow us to visualise existing data sources in new ways.
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