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“It 1s a cruel jest to say to a bootless

man that he should lift himself by

his own bootstraps. It is even
worse to tell a man to lift himself
by his own bootstraps when
somebody is standing on the boot.”
-Martin Luther Kinggl




The bootstrap is similar to cross-validation, but
simpler. It is a technique for calculating things
like confidence intervals when the assumptions
on which they are based are questionable.

Example: weights of 10 halibut in kg:
1.1 14 1.8 3.0596 3.2 111011 1.0

95% Cl for population mean: x + t SE (x)
7.4+ 2.26(5.8) = 7.4 + 13



Questions:

e What does the confidence interval mean
(precisely)?

 What assumptions are being made for this
calculation to be valid?

e What theorem justifies these assumptions?

Do you think these assumptions are justified
in this example?



A confidence interval is a statement about what happens when
we take more samples from the same population. We can’t take
more samples from the same population, but remember what
we did with cross-validation; we can sample from the sample,
also known as resampling.




Since sample size is very important, it is crucial that we get
samples from the sample which are of the same size as the
original sample. This can be done if we sample with replacement
from the original sample.

1.1 1418 3.0596 3.2 11101110

Booststrap samples:

14 11596 3.2 1014181110 3.2
3.2 3211 596 32113011 3.2 3.0
301110 596 14101111 1.0 59.6
1.01011 18 1110101411 11



Frequency

means <- rep(0,100)
for (1 1n 1:100)
means[i1] <- mean(sample(fish,10,replace=T))

hist(means)
sort(means)[c(0.025*Iength(means), 0.975*length(means))]

Histogram of means
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Skeptical question:

Given that the intervals are about the same -- (0,20) versus (1,19)
-- doesn’t that mean that they’re equally good?

Answer:

Yes (or in this case equally bad; they have true coverage
probability of only around 50%), but the bootstrap can be used to
get an estimate for any statistic you like, and does not rely on any
distributional assumptions. It does, however, rely on the
assumption that a sample from a sample is as good as a sample
from the population, which may not be the case.
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Why does my bootstrap interval have terrible coverage?

| wanted to do a class demaonstration where | compare a t-interval to a hootstrap interval and calculate

3 the coverage probability of both. [wanted the data to come from a skewed distnbution so | chose to
generate the data as expirnerm(1@, @, 233 + 1, a sample of size 10 from a shifted lognormal. |
wirote a script to drawe 1000 samples and, for each sample, calculate both a 895% t-interval and a 95%
bootstrap percentile interval based on 1000 replicates.

Ywhen | run the script, both methods give very similar intervals and hoth have coverage probahility of
20-60%. | was surprised because | thought the bootstrap interval would he better,

My gquestion is, have |

¢ made a mistake in the code?
* made a mistake in calculating the intervals®
¢ made a mistake by expecting the bootstrap interval to have hetter coverage properties?

Alsn, is there away to construct a mare reliable Clin this situation”

tCI.total <- @
boot(I.total <- @
m <- 18 # sample size

true.mean €- exp(2) + 1

for (i in 1:122@)
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You can use the bootstrap to work out the sampling properties of all
sorts of things. Here, we are interested in using it to analyse

regressions when we suspect that the regression assumptions might
not be satisfied, or when we want to calculate complicated statistics.

Example: Boston data, model medv ~ . Again.
95 % t-based Cls for all regression coefficients

betaO crim zninduschas nox rm age dis rad tax ptratio

[1,] 26.43 -0.17 0.02 -0.10 0.99 -25.27 2.99 -0.03 -1.87 0.18 -0.02 -1.21

[2,] 46.49 -0.04 0.07 0.14 4.38-10.26 4.63 0.03 -1.08 0.44 0.00 -0.70
black Istat

[1,] 0.00-0.62

[2,] 0.01-0.43

95% Bootstrap CIS

betaO crim zninduschas nox rm age dis rad tax ptratio

[1,] 19.38 -0.16 0.02 -0.08 0.25 -24.86 2.28 -0.03 -1.92 0.18 -0.02 -1.20

[2,] 51.58 -0.02 0.07 0.12 5.05-10.57 5.66 0.03 -1.07 0.42 -0.01 -0.73
black Istat

[1,] 0.00-0.71

[2,] 0.01-0.33
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Let’s suppose we are interested in some strange statistic like: how many of the
regression coefficients are greater in size than 1/13?

The bootstrap gives us an easy way to estimate this. For each bootstrap sample,
we just calculate the relevant statistic.

mean = 10.0
sd =0.93
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Of course, a lot of
computation is involved
| (“the Bootstrap will
blow a hole in your
problem, provided you
are willing to put up

: 9 I with the mess” — Efron)
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