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The bootstrap is similar to cross-validation, but 
simpler. It is a technique for calculating things 
like confidence intervals when the assumptions 
on which they are based are questionable. 
 
Example: weights of 10 halibut in kg: 
1.1  1.4  1.8  3.0 59.6  3.2  1.1  1.0  1.1  1.0 
 
95% CI for population mean: 𝑥̅ ± 𝑡 𝑆𝑆 𝑥̅  
7.4 ± 2.26(5.8) = 7.4 ± 13 



Questions: 
 

• What does the confidence interval mean 
(precisely)? 

• What assumptions are being made for this 
calculation to be valid? 

• What theorem justifies these assumptions? 
• Do you think these assumptions are justified 

in this example? 



A confidence interval is a statement about what happens when 
we take more samples from the same population. We can’t take 
more samples from the same population, but remember what 
we did with cross-validation; we can sample from the sample, 
also known as resampling. 



Since sample size is very important, it is crucial that we get 
samples from the sample which are of the same size as the 
original sample. This can be done if we sample with replacement 
from the original sample. 
 
1.1  1.4  1.8  3.0 59.6  3.2  1.1  1.0  1.1  1.0 
 
Booststrap samples: 
 
1.4  1.1  59.6  3.2     1.0  1.4  1.8  1.1  1.0   3.2 
3.2  3.2  1.1    59.6   3.2  1.1  3.0  1.1  3.2   3.0 
3.0  1.1  1.0    59.6   1.4  1.0  1.1  1.1  1.0   59.6 
1.0  1.0  1.1    1.8     1.1  1.0  1.0  1.4  1.1   1.1 
… 



means <- rep(0,100) 

for (i in 1:100) 

means[i] <- mean(sample(fish,10,replace=T)) 

 

hist(means) 

sort(means)[c(0.025*length(means), 0.975*length(means))] 

Bootstrap 95% CI: 
 
(1.2, 19.1) 

Central Limit 
Theorem not 
kicking in yet! 



Skeptical question: 
 
Given that the intervals are about the same -- (0,20) versus (1,19) 
-- doesn’t that mean that they’re equally good? 
 
Answer: 
 
Yes (or in this case equally bad; they have true coverage 
probability of only around 50%), but the bootstrap can be used to 
get an estimate for any statistic you like, and does not rely on any 
distributional assumptions. It does, however, rely on the 
assumption that a sample from a sample is as good as a sample 
from the population, which may not be the case. 
 
 





You can use the bootstrap to work out the sampling properties of all 
sorts of things. Here, we are interested in using it to analyse 
regressions when we suspect that the regression assumptions might 
not be satisfied, or when we want to calculate complicated statistics. 
Example: Boston data, model medv ~ . Again. 
 
95 % t-based CIs for all regression coefficients 
 
beta0  crim   zn indus chas    nox   rm   age   dis  rad   tax ptratio 
[1,] 26.43 -0.17 0.02 -0.10 0.99 -25.27 2.99 -0.03 -1.87 0.18 -0.02   -1.21 
[2,] 46.49 -0.04 0.07  0.14 4.38 -10.26 4.63  0.03 -1.08 0.44  0.00   -0.70 
     black lstat 
[1,]  0.00 -0.62 
[2,]  0.01 -0.43 
 
95% Bootstrap CIS 
 
beta0  crim   zn indus chas    nox   rm   age   dis  rad   tax ptratio 
[1,] 19.38 -0.16 0.02 -0.08 0.25 -24.86 2.28 -0.03 -1.92 0.18 -0.02   -1.20 
[2,] 51.58 -0.02 0.07  0.12 5.05 -10.57 5.66  0.03 -1.07 0.42 -0.01   -0.73 
     black lstat 
[1,]  0.00 -0.71 
[2,]  0.01 -0.33 
 
 
 



 
Left: raw data; Right: x’s centered and scaled 

(which is better?) 



Let’s suppose we are interested in some strange statistic like: how many of the 
regression coefficients are greater in size than 1/13? 
 
The bootstrap gives us an easy way to estimate this. For each bootstrap sample, 
we just calculate the relevant statistic. 
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0 mean = 10.0 
sd = 0.93 

Of course, a lot of 
computation is involved 
(“the Bootstrap will 
blow a hole in your 
problem, provided you 
are willing to put up 
with the mess” – Efron) 
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