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Probable contents: 
 
• Random versus fixed effects. 
• Interaction terms. 
• Additive models. 
• Multivariate regression. 



Random versus fixed effects 



Sauer et al. analysis of the Breeding Bird Survey. 30 
species of bird, with counts for year 1 and year 2. Aim: to 
determine which species are declining, becoming more 
abundant, or are stable. 
 
(year 2 count) = trend x (year 1 count) 
 
Model: 
 
log(trend estimate for ith species) ~ 𝑁(𝜇,𝜎2) 
 
Why? 
Why would we assume that the trend estimates are a 
random sample from a normal distribution?   



Regression example: 
 
Working out the sale price for a second-hand car, based on: 

– Mileage 
– Age 
– Make & model 
– Etc. 

 
 It’s clear that make and model are 

important and we shouldn’t just 
throw this information away. But if 
we use the model of car as a 
categorical variable, we will have 
way too many categories and will be 
over-fitting (some models, like the 
Honda Civic, will appear often in our 
sample. But others, like the 
Lambourghini Countach, are likely to 
be very rare.) And what do we do if a 
particular type of car doesn’t appear 
at all? 



 
𝑦 =  𝛽1 𝑎𝑎𝑎 +  𝛽2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽0 𝑚𝑚𝑚𝑚 + ⋯+  𝜀 

 
Where 𝛽0 𝑚𝑚𝑚𝑚  ~ N(µ,𝜎2) for some unknown mean and 
standard deviation. 
 
The 𝛽0 𝑚𝑚𝑚𝑚  are numbers called random effects. The other 𝛽𝑖  
are called fixed effects. 
 
A model like this is called a multilevel model or hierarchical model 
or mixed model. 
 
What are the advantages of using random effects? 



• More parsimonious; fewer parameters to 
estimate. 
 

• Reflects the fact that the cars in our sample 
really did come from a larger population. 
 

• Allows us to make predictions for a make/model 
we have never seen before: draw from the fitted 
N(µ,𝜎2) distribution. 
 

• Can be shown to matter when real data 
generating process is of this form. 



Downsides: 
 
• Models are much harder to fit. If the model is 

complicated enough, may be practically impossible. 
• Nobody can agree how to quantify uncertainty in the 

fitted regression coefficients. 
• Nobody can agree how to make predictions from the 

fitted model. 
 

Hopefully these problems will be overcome.  
 
Reference: Gelman and Hill: Data Analysis Using 
Regression and Multilevel/Hierarchical Models 
 

 



Discussion: Random effects or fixed effects? 
 
Scenario 1: You are interested in the effect of various 
soil variables on the growth of pine trees. You have 
measured the variables for eight pine trees and want 
to take account of variation between trees in your 
regression. 
 
Scenario 2: You are studying the relationship between 
education and crime rate in the US and want to 
include the state as a categorical variable in your 
regression (i.e. “control” for differences between 
states.) 



Interaction terms 



Going back to the standard linear model, we 
often find that just doing a linear regression isn’t 
flexible enough; the model has high bias in the 
parlance of an earlier lecture. 
 
An interaction is a term of the form 𝑥𝑖 𝑥𝑗 where 
𝑥𝑖 and 𝑥𝑗 are variables in the model. You can 
also have higher-order interactions. 
 
Including interactions gives you a more flexible 
model (at the cost of …. ?) 
 
 

(re-draw bv tradeoff) 



An important principle: don’t include the product  
𝑥𝑖 𝑥𝑗 unless 𝑥𝑖 and 𝑥𝑗 are also in the model! 
 
(Motivation: expand (𝑥𝑖−𝑎) (𝑥𝑗−𝑏)  … ; 
inference should be invariant when you shift the 
variables.) 
 
 
How can we test whether an interaction term is 
significant/should be added to the model? 
 
 



• We could use cross-validation. 
• We could use ANOVA. 
 
Example: Boston housing data. 
 
model <- lm(medv ~., data=Boston) 
model2 <- lm(medv ~. + crim*lstat, data=Boston) 
 
 
 
> anova(model, model2) 
Analysis of Variance Table 
 
   Res.Df RSS     Df   Sum of Sq  F      Pr(>F)   
1  492    130.97                              
2  491    129.62  1    1.3515     5.1195 0.0241 * 
 

(Go through calculation here as well) 



10 x 10 fold cross-validation: no significant 
difference detected between cv scores of the two 
models (t-test, p=0.99). 
 
Discussion Question: 
 
Why do the two methods give different 
conclusions? 
 
Which is correct? 



How do you know when you should add an 
interaction? 
 
Is it a good idea to keep trying all possible 
interactions until you find a significant one? Why 
or why not? 
 
How else can you detect interactions? 
 



 
 
 
 

Additive Models 



An additive model has the form 
 
𝑦 =  𝛽1𝑓1 𝑥1 + 𝛽2𝑓2 𝑥2 + … + 𝛽𝑝𝑓𝑝 𝑥𝑝  

 
where 𝑥 is a vector of covariates, and the 𝑓’s are 
functions. Notice that there is no need for a 
constant term since it could be part of one of the 
𝑓’s. Similarly, the 𝛽𝑖  could be omitted.  An 
additive model is just another way of saying “a 
model which is linear in some transformed 
versions of the predictors”.  Fitting an additive 
model is the same as transforming the x-
variables. 



Example: log(AirPassengers) measured monthly from 1949 to 1960. t=1 corresponds to January 
1949. 



Disclaimer: What 
follows is not 
(usually) the right 
way to analyse 
time series data! 



Seasonal Dummy (1 2 3 4 5 … 12 1 2 3 4 
5 6 etc…) 
 
y <- log(AirPassengers) 
n <- length(AirPassengers) 
t <- 1:n 
month <- rep(1:12, 50)[1:n] 
model1 <- lm(y ~ t + factor(month))   
#13 x-variables 
plot(t, y, "l") 
lines(t, model$fitted, col="red", 
lty=2) 

There are other things we should worry about because 
this is a time series problem (why would we be analysing 
these data anyway?), but this fit looks OK. 
 
13 is a lot. Can we be more parsimonious?  



# Try sin and cos terms 
# Frequency 1/12:  
s1 <- sin(2*pi*t/12) 
c1 <- cos(2*pi*t/12) 
model.trig1 <- lm(y ~ t + s1 + c1) 



s2 <- sin(2* 2*pi*t/12) 
c2 <- cos(2* 2*pi*t/12) 
model.trig2 <- lm(y ~ t + s1 + c1 + s2 + c2) 



> anova(model.trig1, model.trig2) 

Analysis of Variance Table 

 

Model 1: y ~ t + s1 + c1 

Model 2: y ~ t + s1 + c1 + s2 + c2 

  Res.Df     RSS Df Sum of Sq     F    Pr(>F)     

1    140 1.12161                                  

2    138 0.63864  2   0.48296 52.18 < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

What if we want to compare the 13-parameter seasonal 
model with the 6-parameter model with sine and cosine 
terms of frequency 1/12 and 1/24? How can we compare 
these models? 
 
Suddenly we can’t just use cross-validation. 



Instead of finding your own transformations, you 
can use smoothing splines or loess-type smoothers 
to transform the predictors. This gives a generalized 
additive model or GAM. 
 
In SAS:  proc gam 
Similar to proc reg 
 

“there is hardly ever any reason to prefer linear 
models to additive ones, and the continued 

thoughtless use of linear regression is a scandal.” 
- Cosma Shalizi 



GAMs can be difficult to fit, but you can cheat and 
smooth the variables yourself. 
 
On the Boston housing price data: 
 
CV error of linear model log(medv) ~. was 19 ± 0.4.  
CV error of GAM (using R’s loess) is 17 ± 0.07.  
 
Many of the plots on the next page look linear, but GAM 
sometimes predicts better at the edges. You could 
choose your own transformations instead of using loess. 





Multivariate regression 



Multivariate regression is where you have 
several predictor (x) variables and several 
response (y) variables. Each y-variable has its 
own regression on the x’s. 
 
We now have a matrix problem 
 

𝐘 = 𝐗𝛃+  𝛆 
 
(demonstrate at board) 



The matrix 𝑿 is the same as in the one-variable 
problem. The least-squares solution is the same. 
 

𝛃� = (𝐗′𝐗)−𝟏𝐗′𝐘 
 
But now 𝛃� is a matrix. The advantage of doing 
several regressions at once is that we can consider 
the y’s simultaneously.  
 
For example, what is the correlation structure 
between them? (Usually if the y’s are not correlated, 
there is no point in doing this kind of analysis. Also, if 
the y’s are highly correlated, there is no point; it’s like 
having just one y.) 



When the x’s are categorical, this is called one-way MANOVA (multivariate analysis of variance) 
 
 
 
 weight  Ph  fruit 

1    200 3.3  apple 

2    250 2.9  apple 

3    220 3.5  apple 

4    300 3.7 orange 

5    310 4.0 orange 

6    200 4.3 orange 

7    200 3.5   pear 

8   270 3.9   pear 

9   250 4.3   pear 

 

 

 

 

Q. Evidence of a difference in (weight, Ph) among different kinds of 
fruit? 
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lm(cbind(weight, Ph) ~ fruit, data=dat) -> model 
 
> summary(manova(model)) 
          Df  Pillai approx F num Df den Df Pr(>F) 
fruit      2 0.74359   1.7755      4     12 0.1986 
Residuals  6  
 

Test of  H0 : all regression coefficients are zero except for constant term  
 vs. 
              H1: H0 is false. 
 
Very similar to ANOVA. 
 
Conclusion here: no evidence of a difference in mean (weight, Ph) between 
apples and pears and between apples and oranges. 

Important question: why is this “better” than 
just doing a separate regression for each y-
variable? 



SAS version: 
 
data fruit; 
  input weight Ph apple orange pear; 
  cards; 
  200 3.3 1 0 0 
  250 2.9 1 0 0 
  220 3.5 1 0 0 
  300 3.7 0 1 0 
  310 4.0 0 1 0 
  200 4.3 0 1 0 
  200 3.5 0 0 1 
  270 3.9 0 0 1 
  250 4.3 0 0 1 
run; 
  
proc print; 
 run; 

 
proc reg data = fruit; 
   model weight Ph = apple orange; 
   M1: mtest; 
run; TMI ! 



You can also do these tests with continuous predictors (this is harder to do in R 
than in SAS). If 𝑥𝑖  is the ith predictor, you can test  
 
H0 : 𝛽𝑖 = 0 for all the y’s. 
H1: some 𝛽𝑖  is not zero.  
 
e.g. in SAS, add  M2: mtest apple; 
 

In R, use the anova function. Note: the order in which you specify the 
variables in lm makes a difference to the results in R!  
 

Example: Rohwer data. Three test scores SAT, PPVT, Raven; 
several variables give the scores of students on earlier test. 
Searching for an association between earlier scores and 
SAT+PPVT+Raven scores.  



data Rohwer; 
infile 
"H:\SASfiles\Rohwer.tx
t"; 

input SAT PPVT Raven n 
s ns na ss; 
run; 

 
proc print; 
run; 
 

proc reg data=Rohwer; 
 model SAT PPVT Raven 
= n s ns na ss; 

 M1: mtest; 

 M2: mtest n; 
 M3: mtest n, s; 

run; 



Ironically, although the MANOVA-type tests are 
supposed to avoid multiple comparisons, they can offer 
pretty good scope for data dredging if not used with 
care. 
 
However, in some research areas these techniques are 
extremely popular.  
 
We haven’t discussed the assumptions underlying the 
tests and what is actually being calculated. It would be 
better to take a specialist course if you wish to use 
these methods on real data. One important fact is that 
MANOVA assumes multivariate normality (there is no 
normality assumption like this in linear regression.) 



Example writeup 
A one-way multivariate analysis of variance (MANOVA) was conducted to determine the effect of the three types 
of study strategies (thinking, writing and talking) on two dependent variables (recall and application test scores). 
A nonsignificant Box’s M, indicated a lack of evidence that the homogeneity of variance-covariance matrix 
assumption was violated. No univariate or multivariate outliers were evident and MANOVA was considered to be 
an appropriate analysis technique. 
 
Significant differences were found among the three study strategies on the dependent measures, Wilks’    = .42, F 
(4,52) = 7.03, p < .001. The multivariate Wilks'    was quite strong at .35. Table 1 presents the means and standard 
deviations of the dependent variables for the three strategies. 
 
Univariate analyses of variance (ANOVAs) for each dependent variable were conducted as follow-up tests to the 
MANOVA. Using the Bonferroni method for controlling Type I error rates for multiple comparisons, each ANOVA 
was tested at the .025 level. The ANOVA of the recall scores was significant, F (2,27) = [..] while the ANOVA based 
on the application scores was nonsignificant, [..] 
 
Post hoc analysis for the recall scores consisted of conducting pairwise comparisons to determine which study 
strategy affected performance most strongly. Each pairwise comparison was tested at the .025/3, or .008, 
significance level. The writing group produced significantly superior performance on the recall questions in 
comparison with either of the other two groups. The thinking and talking groups did not differ significantly from 
each other. 
 

         Recall  Application  

Strategy  M  SD  M  SD  

Thinking  3.30  0.68  3.20  1.23  

Writing  5.80  1.03  5.00  1.76  

Talking  4.20  1.14  4.40  1.17 
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