413: PROBLEM SET 4. DUE THURSDAY 28 FEBRUARY

- (1) Let $\{x_n\}$ be a Cauchy sequence of rational numbers. Since $\mathbb{Q} \subset \mathbb{R}$, we may regard $\{x_n\}$ as a Cauchy sequence of real numbers. Since every Cauchy sequence of real numbers converges, this sequence has a limit. Prove that this limit is the real number defined as the equivalence class of the original sequence $\{x_n\}$.
- (2) Since Q is a countable set, we may write down its elements as a sequence q₁, q₂, q₃,...
 (this is called an *enumeration* of Q). What are the limit points of such a sequence?
 Does the set of limit points depend on the choice of enumeration?
- (3) Let {x_n} be any sequence of real numbers and let {a_n} be a sequence which converges to 0. Prove that the set of limit points of the sequence {x_n + a_n} is the same as the set of limit points of {x_n}.
- (4) Find all the limit points in R∪{±∞} of the following sequences. Identify the limsup and liminf.
 - (a) $\{(-1)^n + \frac{1}{n} + 2^{-n}\}.$
 - (b) $\{(-2)^n\}.$
- (5) Section 3.1.3, #5.
- (6) Section 3.1.3, #9.
- (7) A subset S ⊂ R is an *interval* if for all x, y ∈ S and for all z ∈ R, if x < z < y then z ∈ S. Prove that the intersection of an arbitrary collection of intervals is always an interval.
- (8) Section 3.2.3 # 1.
- (9) Section 3.2.3 #7. (Note: limit-point is here a synonym for cluster point; see p. 92 of the textbook.)