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Recall that we are trying to solve a classification 
problem in which features 𝑥𝑖  can be continuous or 
discrete (coded as 0/1) and the response 𝑦 is 
discrete (0/1). 

 

Logistic regression is a standard statistical method 
which can be used for classification.  

 

It is analogous to linear regression for regression 
problems, but often performs better (in the sense 
that in a real-life problem, logistic regression is 
more likely to be a good method in practice.) 



Recall [see last week’s notes] that we can’t just use 
the model 

 
𝑦𝑖 =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 

 

because this could make predictions for 𝑦𝑖 outside 
(0,1). There are many ways of transforming a value 
in (-∞ , ∞) to a value in (0,1). [See board]. A 
common one in statistics is the logistic 
transformation.  



Logistic Transformation 

 

𝑓 𝑥 = log
𝑥

1 − 𝑥
 

 

Also called log-odds. If p is a probability of an 
event, p/(1-p) is called the odds. e.g. p=1/3 
corresponds of odds of 1/2. 

 

Note: the odds are called odds on in betting. 
Odds are usually quoted as odds against, which is 
p/(1-p). For example: 



Ronnie O'Sullivan  
2/1  

Mark Selby  
6/1  

Neil Robertson  
7/1  

Ding Junhui  
10/1  

P(Ding Junhui  wins) = p 

 
(1 − 𝑝)/𝑝 =  10 

 
𝑝 =  1/11 

 Note: an event with a probability greater than ½ is quoted as “odds-on”. For example, a 
horse with a probability of winning of 2/3 has odds of 2, which is quoted as “2-1 on.” or 
“1-2”. 



odds logit(x) = f(x) Inverse logit 



 

• 𝑓 is useful for transforming variables. Often if a 
variable is positive by nature, you should take 
its log. Similarly, if a variable takes values in 
(0,1), you should try taking its logit. 

• Other possibilities: 𝐹(x) for any probability 
distribution 𝑓. 

• Logit is particularly convenient because it 
means that various inferences from logistic 
regression can be expressed in closed form 
(similar to multiple linear regression requiring 
assumptions – which you should know!) 

 

 



Logistic Regression 

 

𝑙𝑜𝑔 
𝑃 𝑦𝑖 = 1

𝑃 𝑦𝑖 = 0
=  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 

 

Alternatively, could be written: 

 

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑜𝑔𝑖𝑡−1(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝)) 

 

Fitted in software by calculating the likelihood and 
maximising. (More difficult than linear regression.) 



Interpreting 𝛽𝑖  

 

The 𝛽𝑖 are log(odds ratios). 𝑒𝛽𝑖 is how much 
odds(y=1) increases with a one-unit increase in 𝑥𝑖  
(for 𝑥𝑖  continuous).  

 

To interpret this in terms of probability, you can 
roughly divide by 4. (Recommended  in Gelman & 
Hill). This only works near p=1/2, by considering 
the slope of the logit curve [demonstrated in class.] 



glm(formula = ifelse(sp == "B", 1, 0) ~ . - index, data = crabs) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.42869  -0.11730   0.01784   0.13141   0.34693   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.88303    0.09299   9.496  < 2e-16 *** 

sexM        -0.13242    0.05027  -2.634 0.009116 **  

FL          -0.26735    0.02692  -9.933  < 2e-16 *** 

RW          -0.07513    0.02232  -3.365 0.000923 *** 

CL          -0.04001    0.03545  -1.129 0.260457     

CW           0.25063    0.02304  10.879  < 2e-16 *** 

BD          -0.21638    0.03032  -7.137 1.88e-11 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for gaussian family taken to be 0.0317067) 

 

    Null deviance: 50.0000  on 199  degrees of freedom 

Residual deviance:  6.1194  on 193  degrees of freedom 

AIC: -113.8 

 

Number of Fisher Scoring iterations: 2 



Deviance = -2max value of LL 

Measure of how well the model fits overall. Made 
up of the sum of the deviance residuals; used in 
place of ordinary (Pearson) residuals 

 
Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.42869  -0.11730   0.01784   0.13141   0.34693   

 

Confidence intervals for coefficients can be 
calculated using the normal distribution, eg. 

For sexM: 

-0.13242    0.05027 

 



Null deviance: 50.0000  on 199  degrees of freedom 

Residual deviance:  6.1194  on 193  degrees of freedom 

AIC: -113.8 

 

The deviance is supposed to go down by 1 for each 
variable added, if the variables are random noise. Under 
this assumption, the deviance will be chi-squared 
distributed with (199-193) degrees of freedom.  
 

1-pchisq(50-6.11, df=199-193) 

[1] 7.772806e-08 

 

Analogue of ANOVA F-test for overall significance of the 
model. 



Note: just like in linear regression, you should 
usually centre the variables before doing the 
analysis. This makes the intercept more 
meaningful and improves convergence of the 
algorithm which fits the model. 

 

Note 2: As usual, SAS outputs quite a bit more. The 
extra table of statistics are measures of 
correlation between the fitted probabilities and 
the observed values of y. (Percent Concordant etc.) 



Using logistic regression for classification 

 

Recall that this section is about classifying things. 
We can get a 0/1 prediction from logistic regression 
just by rounding (up from 0.5, down from 0.5). 

 

Sometimes you have a rare y=1 and you want to 
include 50% 1’s and 50% 0’s in your data for logistic 
regression. Then you should adjust the cutoff for 
prediction. This is called case-control sampling. 



folds <- sample(1:5, 200, replace=T) 

cv <- rep(0,5) 

 

for (i in 1:5){ 

  train <- crabs[folds!=i,] 

  test <- crabs[folds==i,] 

  y <- ifelse(train$sp=="B", 1, 0) 

  model <- glm(y ~., data=train[,-1], family="binomial") 

  pred <- predict(model, test[,-1]) 

  pred <- 1/(1+exp(-pred)) 

  cv[i] <- sum(ifelse(pred>0.5,1,0) == ifelse(test[,1]=="B",1,0))/nrow(test) 

} 

 

 

In the crabs data, the model works perfectly but logistic regression 
gives a warning. This is because the algorithm fails to converge if the 
classes are separated by a hyperplane (which is the case in this 
example.) 

Warning messages: 

1: glm.fit: algorithm did not converge  

2: glm.fit: fitted probabilities numerically 0 or 1 occurred  

 



Example (if time): 

 
library(MASS) 

data(Pima.tr) 

data(Pima.te) 

model <- glm(type ~., data=Pima.tr, family="binomial") 

summary(model) 

pred <- predict(model, Pima.te) 

pred <- 1/(1+exp(-pred)) 

pred <- round(pred) 

sum(pred==ifelse(Pima.te$type=="Yes",1,0))/nrow(Pima.te) 




