
Logistic Regression

21/05

Recall that we are trying to solve a classification
problem in which features 𝑥𝑖 can be continuous or
discrete (coded as 0/1) and the response 𝑦 is
discrete (0/1).

Logistic regression is a standard statistical method
which can be used for classification.

It is analogous to linear regression for regression
problems, but often performs better (in the sense
that in a real-life problem, logistic regression is
more likely to be a good method in practice.)

Recall [see last week’s notes] that we can’t just use
the model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

because this could make predictions for 𝑦𝑖 outside
(0,1). There are many ways of transforming a value
in (-∞ , ∞) to a value in (0,1). [See board]. A
common one in statistics is the logistic
transformation.

Logistic Transformation

𝑓 𝑥 = log
𝑥

1 − 𝑥

Also called log-odds. If p is a probability of an
event, p/(1-p) is called the odds. e.g. p=1/3
corresponds of odds of 1/2.

Note: the odds are called odds on in betting.
Odds are usually quoted as odds against, which is
p/(1-p). For example:

Ronnie O'Sullivan
2/1

Mark Selby
6/1

Neil Robertson
7/1

Ding Junhui
10/1

P(Ding Junhui wins) = p

(1 − 𝑝)/𝑝 = 10

𝑝 = 1/11

 Note: an event with a probability greater than ½ is quoted as “odds-on”. For example, a
horse with a probability of winning of 2/3 has odds of 2, which is quoted as “2-1 on.” or
“1-2”.

odds logit(x) = f(x) Inverse logit

• 𝑓 is useful for transforming variables. Often if a
variable is positive by nature, you should take
its log. Similarly, if a variable takes values in
(0,1), you should try taking its logit.

• Other possibilities: 𝐹(x) for any probability
distribution 𝑓.

• Logit is particularly convenient because it
means that various inferences from logistic
regression can be expressed in closed form
(similar to multiple linear regression requiring
assumptions – which you should know!)

Logistic Regression

𝑙𝑜𝑔
𝑃 𝑦𝑖 = 1

𝑃 𝑦𝑖 = 0
= 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

Alternatively, could be written:

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑜𝑔𝑖𝑡−1(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝))

Fitted in software by calculating the likelihood and
maximising. (More difficult than linear regression.)

Interpreting 𝛽𝑖

The 𝛽𝑖 are log(odds ratios). 𝑒𝛽𝑖 is how much
odds(y=1) increases with a one-unit increase in 𝑥𝑖
(for 𝑥𝑖 continuous).

To interpret this in terms of probability, you can
roughly divide by 4. (Recommended in Gelman &
Hill). This only works near p=1/2, by considering
the slope of the logit curve [demonstrated in class.]

glm(formula = ifelse(sp == "B", 1, 0) ~ . - index, data = crabs)

Deviance Residuals:

 Min 1Q Median 3Q Max

-0.42869 -0.11730 0.01784 0.13141 0.34693

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.88303 0.09299 9.496 < 2e-16 ***

sexM -0.13242 0.05027 -2.634 0.009116 **

FL -0.26735 0.02692 -9.933 < 2e-16 ***

RW -0.07513 0.02232 -3.365 0.000923 ***

CL -0.04001 0.03545 -1.129 0.260457

CW 0.25063 0.02304 10.879 < 2e-16 ***

BD -0.21638 0.03032 -7.137 1.88e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.0317067)

 Null deviance: 50.0000 on 199 degrees of freedom

Residual deviance: 6.1194 on 193 degrees of freedom

AIC: -113.8

Number of Fisher Scoring iterations: 2

Deviance = -2max value of LL

Measure of how well the model fits overall. Made
up of the sum of the deviance residuals; used in
place of ordinary (Pearson) residuals

Deviance Residuals:

 Min 1Q Median 3Q Max

-0.42869 -0.11730 0.01784 0.13141 0.34693

Confidence intervals for coefficients can be
calculated using the normal distribution, eg.

For sexM:

-0.13242 0.05027

Null deviance: 50.0000 on 199 degrees of freedom

Residual deviance: 6.1194 on 193 degrees of freedom

AIC: -113.8

The deviance is supposed to go down by 1 for each
variable added, if the variables are random noise. Under
this assumption, the deviance will be chi-squared
distributed with (199-193) degrees of freedom.

1-pchisq(50-6.11, df=199-193)

[1] 7.772806e-08

Analogue of ANOVA F-test for overall significance of the
model.

Note: just like in linear regression, you should
usually centre the variables before doing the
analysis. This makes the intercept more
meaningful and improves convergence of the
algorithm which fits the model.

Note 2: As usual, SAS outputs quite a bit more. The
extra table of statistics are measures of
correlation between the fitted probabilities and
the observed values of y. (Percent Concordant etc.)

Using logistic regression for classification

Recall that this section is about classifying things.
We can get a 0/1 prediction from logistic regression
just by rounding (up from 0.5, down from 0.5).

Sometimes you have a rare y=1 and you want to
include 50% 1’s and 50% 0’s in your data for logistic
regression. Then you should adjust the cutoff for
prediction. This is called case-control sampling.

folds <- sample(1:5, 200, replace=T)

cv <- rep(0,5)

for (i in 1:5){

 train <- crabs[folds!=i,]

 test <- crabs[folds==i,]

 y <- ifelse(train$sp=="B", 1, 0)

 model <- glm(y ~., data=train[,-1], family="binomial")

 pred <- predict(model, test[,-1])

 pred <- 1/(1+exp(-pred))

 cv[i] <- sum(ifelse(pred>0.5,1,0) == ifelse(test[,1]=="B",1,0))/nrow(test)

}

In the crabs data, the model works perfectly but logistic regression
gives a warning. This is because the algorithm fails to converge if the
classes are separated by a hyperplane (which is the case in this
example.)

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically 0 or 1 occurred

Example (if time):

library(MASS)

data(Pima.tr)

data(Pima.te)

model <- glm(type ~., data=Pima.tr, family="binomial")

summary(model)

pred <- predict(model, Pima.te)

pred <- 1/(1+exp(-pred))

pred <- round(pred)

sum(pred==ifelse(Pima.te$type=="Yes",1,0))/nrow(Pima.te)

