
Multiple Regression Part 2 

STAT 315, 26/03 



Question: what is the purpose of fitting a statistical model to data? 
Call: 
lm(formula = stack.loss ~ ., data = stackloss) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-7.2377 -1.7117 -0.4551  2.3614  5.6978  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -39.9197    11.8960  -3.356  0.00375 **  
Air.Flow      0.7156     0.1349   5.307  5.8e-05 *** 
Water.Temp    1.2953     0.3680   3.520  0.00263 **  
Acid.Conc.   -0.1521     0.1563  -0.973  0.34405     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.243 on 17 degrees of freedom 
Multiple R-squared:  0.9136,    Adjusted R-squared:  0.8983  
F-statistic:  59.9 on 3 and 17 DF,  p-value: 3.016e-09 

 

How should we use this output? What is it telling us 
about stack loss? 



sample 

We are really 
interested in 
generalising from a 
sample to a larger 
population. This is 
known as 
inference because 
we want to infer 
things about the 
population from 
the sample. 
 



• The reason why we need p-values, confidence intervals and 
things is because we can’t usually take another sample from the 
population. We just have to make do with the data we have. 
 

• The reason why we need regression diagnostics is because our p-
values and things will not be valid if the assumptions of 
regression are violated.  
 

• “Valid” means that they won’t accurately reflect what would 
happen if we got a different sample from the population that our 
sample came from.   
 

• (If only there was some way to get more data from the same 
population!) 



1. CRIM per capita crime rate by town 
2. ZN proportion of residential land zoned for lots over 25,000 sq.ft. 
3. INDUS proportion of non-retail business acres per town 
4. CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 
5. NOX nitric oxides concentration (parts per 10 million) 
6. RM average number of rooms per dwelling 
7. AGE proportion of owner-occupied units built prior to 1940 
8. DIS weighted distances to five Boston employment centres 
9. RAD index of accessibility to radial highways 
10. TAX full-value property-tax rate per $10,000 
11. PTRATIO pupil-teacher ratio by town 
12. B 1000(Bk - 0.63)^2 where Bk is the proportion of African-Americans by town 
13. LSTAT % lower status of the population 
14. MEDV Median value of owner-occupied homes in $1000's 

Boston housing example: 
 
We want to predict MEDV given the other variables. 
Throwing all the variables into a regression looked a 
bit suspicious. How to improve? 



Ockham’s Razor: 
 
When two theories 
fit the facts, choose 
the simpler one. 
 
Usually the simpler 
theory will have 
better predictive 
power on new data. 



We need a way to measure the fit of a model with includes a 
penalty for models which are too complicated. 
 
For regression, one way of doing this is using Mallows’ 𝐶𝑝 
 
 

𝐶𝑝 =
𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚

𝑀𝑅𝑀 𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚
− 𝑛 + 2(𝑝 + 1) 

 
                                                                                      penalty 

 
By making 𝐶𝑝 small, we can try to find a model which fits well but 
which has a small value of 𝑝. 
 
For linear regression, 𝐶𝑝 is the same as the AIC (Akaike Information 
Criterion). 



proc reg data = boston; 
  model MEDV = CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX 
PTRATIO B LSTAT / vif selection=cp; 
  run;  

 
 
 
 
 

INDUS and AGE were 
dropped. Eleven 
variables are left. 

In R:  
model <- lm(MEDV ~. ,data=boston) 
model2 <- step(model) 



Note: the algorithm being followed is a greedy algorithm. At each 
stage the computer tries all possible ways of adding or removing a 
single variable, and selects the model with the smallest 𝐶𝑝. There is 
no guarantee that this will be the best possible value of 𝐶𝑝 among all 
models!  
 
Called stepwise selection 

Other criteria for selecting a model include the AIC (popular) 
and the BIC (also popular, more conservative.) They tend to 
have the form 
 

(Measure of goodness of fit) - (complexity penalty) 
 

• Simpler models have high bias (they fit badly.) 
• Complex models have high variance (they over-fit.) 



 
Training data 

 
𝑌 = 3𝑥3 − 𝑥 + 𝑁(0, 3) 

Test data 









Test error 

Training error 

High bias, low variance Low bias, high variance 

Bias-variance tradeoff 
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