Multiple Regression Part 2

STAT 315, 26/03

Question: what is the purpose of fitting a statistical model to data?

```
Call:
lm(formula = stack.loss ~ ., data = stackloss)
Residuals:
   Min 10 Median 30 Max
-7.2377 -1.7117 -0.4551 2.3614 5.6978
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -39.9197 11.8960 -3.356 0.00375 **
Air.Flow 0.7156 0.1349 5.307 5.8e-05 ***
Water.Temp 1.2953 0.3680 3.520 0.00263 **
Acid.Conc. -0.1521 0.1563 -0.973 0.34405
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

How should we use this output? What is it telling us about stack loss?

We are really interested in generalising from a sample to a larger population. This is known as inference because we want to infer things about the population from the sample.

- The reason why we *need* p-values, confidence intervals and things is because we can't usually take another sample from the population. We just have to make do with the data we have.
- The reason why we need regression diagnostics is because our pvalues and things will not be valid if the assumptions of regression are violated.
- "Valid" means that they won't accurately reflect what would happen if we got a different sample from the population that our sample came from.
- (If *only* there was some way to get more data from the same population!)

- 1. CRIM per capita crime rate by town
- 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS proportion of non-retail business acres per town
- 4. CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- 5. NOX nitric oxides concentration (parts per 10 million)
- 6. RM average number of rooms per dwelling
- 7. AGE proportion of owner-occupied units built prior to 1940
- 8. DIS weighted distances to five Boston employment centres
- 9. RAD index of accessibility to radial highways
- 10. TAX full-value property-tax rate per \$10,000
- 11. PTRATIO pupil-teacher ratio by town
- 12. B 1000(Bk 0.63)² where Bk is the proportion of African-Americans by town
- 13. LSTAT % lower status of the population
- 14. MEDV Median value of owner-occupied homes in \$1000's

Boston housing example:

We want to predict MEDV given the other variables. Throwing all the variables into a regression looked a bit suspicious. How to improve?

Ockham's Razor:

When two theories fit the facts, choose the simpler one.

Usually the simpler theory will have better predictive power on new data. We need a way to measure the fit of a model with includes a penalty for models which are too complicated.

For regression, one way of doing this is using Mallows' C_p

$$C_{p} = \frac{RSS(model)}{MSE(full model)} - n + 2(p+1)$$

By making C_p small, we can try to find a model which fits well but which has a small value of p.

For linear regression, C_p is the same as the AIC (Akaike Information Criterion).

proc reg data = boston;

model MEDV = CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX
PTRATIO B LSTAT / vif selection=cp;

run;

Parameter Estimates						
		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	36.34115	5.06749	7.17	<.0001	0
CRIM	1	-0.10841	0.03278	-3.31	0.0010	1.78970
ZN	1	0.04584	0.01352	3.39	0.0008	2.23923
CHAS	1	2.71872	0.85424	3.18	0.0016	1.05982
NOX	1	-17.37602	3.53524	-4.92	<.0001	3.77801
RM	1	3.80158	0.40632	9.36	<.0001	1.83481
DIS	1	-1.49271	0.18573	-8.04	<.0001	3.44342
RAD	1	0.29961	0.06340	4.73	<.0001	6.86113
TAX	1	-0.01178	0.00337	-3.49	0.0005	7.27239
PTRATIO	1	-0.94652	0.12907	-7.33	<.0001	1.75768
В	1	0.00929	0.00267	3.47	0.0006	1.34156
LSTAT	1	-0.52255	0.04742	-11.02	<.0001	2.58198

INDUS and AGE were dropped. Eleven variables are left.

In R:

model <- lm(MEDV ~. ,data=boston)
model2 <- step(model)</pre>

Note: the algorithm being followed is a **greedy algorithm**. At each stage the computer tries all possible ways of adding or removing a single variable, and selects the model with the smallest C_p . There is no guarantee that this will be the best possible value of C_p among all models!

Called stepwise selection

Other criteria for selecting a model include the AIC (popular) and the BIC (also popular, more conservative.) They tend to have the form

(Measure of goodness of fit) - (complexity penalty)

- Simpler models have high **bias** (they fit badly.)
- Complex models have high variance (they over-fit.)

Bias-variance tradeoff

High bias, low variance

Low bias, high variance