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In the last 2 lectures, we will discuss unsupervised 
learning again. We will talk about algorithms for 
clustering data. Clusters are collections of points 
which are close to each other, so we need a notion 
of “close”. 

 

Unfortunately, it is not obvious what the 
appropriate notion of “close” might be. So far, we 
have been implicitly using Euclidean Distance. 

 

𝑑 𝑥, 𝑦 = (𝑥1 − 𝑦1)2 +  … + (𝑥𝑛 − 𝑦𝑛)2 



We have already seen that PCA can go wrong if you 
don’t scale the variables. The same thing happens 
with Euclidean distance: 

  (100, 1) (102, 10) (110, 1) 

(100, 1) 0  sqrt(85) sqrt(100) 

(102, 10)   0  sqrt(145) 

(110, 1)     0 

 

(110, 1) ought to be closer to (100, 1) than (102, 
10). We can deal with this by scaling the variables.  



𝑑 𝑥, 𝑦 = (
  𝑥1−𝑦1

𝜎1

)2 +  … + (
𝑥𝑛 − 𝑦𝑛

𝜎𝑛

)2 

where the 𝜎 are the standard deviations of the 
individual variables in the data set.  
 
This works, but it doesn’t take account of 
correlations between variables. We do not want to 
say that two things are very different if they differ 
slightly in many different aspects, all of which are 
similar to one another. 



This problem can be overcome by using Mahalanobis 
Distance. 
 

𝑑 𝑥, 𝑦 =  (𝒙 − 𝒚)′Σ−1(𝒙 − 𝒚) 
 
where Σ−1 is the inverse of the (sample) variance-
covariance matrix of the data. [Question: where have 
you already seen it in this course?] Note when the 
variance-covariance matrix is diagonal, you get the 
same distance as before. 
 
This is a statistical distance; it only makes sense to talk 
about the Mahalanobis distance between two points in 
the context of them being in a data set.  



Discrete variables 

 

Example: 
petal colour   sepal colour  leaf shape  

orange   orange  acute 

red    orange  oval 

blue    blue   oval 

      

simple distance: count 3–(how many features in 
common). [But problem: isn’t orange more similar 
to red than blue? Is this really a categorical 
variable?] 



Presence-absence data 

 

 Site Flounder Halibut Sole Brill Turbot Plaice Dab 

A 1 0 1 0 0 0 1 

B 1 0 0 0 0 0 1 

C 1 1 1 0 1 1 0 

D 0 1 1 1 1 1 0 

E 0 1 0 0 0 0 0 

B1 B0 

A1 2 1 

A0 0 4 

Simple matching: (2+4)/7 
Dice-Sorensen: 2*2/(2*2+1+0) 
Jaccard: 2/(2+0+1) 
 
Measures of similarity ; distance can be obtained in an 
appropriate way, e.g. via 1-x. 



Mixed data 

 

e.g. Hair colour, eye colour, height, weight, BMI. 

 

Distance should be some combination of categorical + 
continuous variables, but it is very hard to see how to 
combine them. 

 

In practice, different subjects (biology, botany, 
archaeology…) have their preferred notions of 
distance to use in particular situations. There is no 
simple recipe for a notion of distance that always 
works. 



Nearest Neighbours 

 

One reason why distance is important is that it can 
be used to decide which points are close together. 
This gives rise to a classification technique called 
nearest neighbours. Given a test instance, simply 
find the training instance which is closest to it, and 
classify it into the appropriate class. 

 

Elaboration: k-nearest neighbours (knn): find the k 
closest training instances, and classify into the 
majority class.  



Example: 

 
Weight Ph 

Apple 29 3.1 

Apple 26 3.4 

Orange 25 3.0 

Orange 22 3.0 

Pear 30 3.6 

Pear 29 3.2 

Pear 20 3.4 

Ex: Use 1-nn to classify a fruit with weight = 26 
and Ph = 3.2 using Mahalanobis distance 



> V 
          [,1]      [,2] 
[1,] 86.857143 1.1428571 
[2,]  1.142857 0.3171429 
> solve(V) 
            [,1]        [,2] 
[1,]  0.01208624 -0.04355401 
[2,] -0.04355401  3.31010453 
 

Distances of new example from training data: 
0.4098897 0.3638739 0.3564671 0.5060608 0.7639527 0.3298123 
0.8197794 

 

Answer: it’s closest to example 6 and would be 
classified as pear (intuitively reasonable.) But if we 
used 3-nn, it would be a tie between the 3 classes, and 
4-nn would give apple. 
 
Here, we see one of the drawbacks of knn; lengthy 
calculations are required.  
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• knn is easy to understand. 

• if the notion of distance is chosen wisely, the 
error of knn is no more than twice the Bayes rate. 
This can be used to estimate the Bayes rate. 

 

• Intensive computation is required to apply knn. 

• All of the training data needs to be stored in 
order to classify new observations. 

• You still need to choose the value of k. (See the 
example.) 

• knn breaks down in high dimensions (the curse 
of dimensionality.) 

 


