
Multivariate Distances

22/05

In the last 2 lectures, we will discuss unsupervised
learning again. We will talk about algorithms for
clustering data. Clusters are collections of points
which are close to each other, so we need a notion
of “close”.

Unfortunately, it is not obvious what the
appropriate notion of “close” might be. So far, we
have been implicitly using Euclidean Distance.

𝑑 𝑥, 𝑦 = (𝑥1 − 𝑦1)2 + … + (𝑥𝑛 − 𝑦𝑛)2

We have already seen that PCA can go wrong if you
don’t scale the variables. The same thing happens
with Euclidean distance:

 (100, 1) (102, 10) (110, 1)

(100, 1) 0 sqrt(85) sqrt(100)

(102, 10) 0 sqrt(145)

(110, 1) 0

(110, 1) ought to be closer to (100, 1) than (102,
10). We can deal with this by scaling the variables.

𝑑 𝑥, 𝑦 = (
 𝑥1−𝑦1

𝜎1

)2 + … + (
𝑥𝑛 − 𝑦𝑛

𝜎𝑛

)2

where the 𝜎 are the standard deviations of the
individual variables in the data set.

This works, but it doesn’t take account of
correlations between variables. We do not want to
say that two things are very different if they differ
slightly in many different aspects, all of which are
similar to one another.

This problem can be overcome by using Mahalanobis
Distance.

𝑑 𝑥, 𝑦 = (𝒙 − 𝒚)′Σ−1(𝒙 − 𝒚)

where Σ−1 is the inverse of the (sample) variance-
covariance matrix of the data. [Question: where have
you already seen it in this course?] Note when the
variance-covariance matrix is diagonal, you get the
same distance as before.

This is a statistical distance; it only makes sense to talk
about the Mahalanobis distance between two points in
the context of them being in a data set.

Discrete variables

Example:
petal colour sepal colour leaf shape

orange orange acute

red orange oval

blue blue oval

simple distance: count 3–(how many features in
common). [But problem: isn’t orange more similar
to red than blue? Is this really a categorical
variable?]

Presence-absence data

 Site Flounder Halibut Sole Brill Turbot Plaice Dab

A 1 0 1 0 0 0 1

B 1 0 0 0 0 0 1

C 1 1 1 0 1 1 0

D 0 1 1 1 1 1 0

E 0 1 0 0 0 0 0

B1 B0

A1 2 1

A0 0 4

Simple matching: (2+4)/7
Dice-Sorensen: 2*2/(2*2+1+0)
Jaccard: 2/(2+0+1)

Measures of similarity ; distance can be obtained in an
appropriate way, e.g. via 1-x.

Mixed data

e.g. Hair colour, eye colour, height, weight, BMI.

Distance should be some combination of categorical +
continuous variables, but it is very hard to see how to
combine them.

In practice, different subjects (biology, botany,
archaeology…) have their preferred notions of
distance to use in particular situations. There is no
simple recipe for a notion of distance that always
works.

Nearest Neighbours

One reason why distance is important is that it can
be used to decide which points are close together.
This gives rise to a classification technique called
nearest neighbours. Given a test instance, simply
find the training instance which is closest to it, and
classify it into the appropriate class.

Elaboration: k-nearest neighbours (knn): find the k
closest training instances, and classify into the
majority class.

Example:

Weight Ph

Apple 29 3.1

Apple 26 3.4

Orange 25 3.0

Orange 22 3.0

Pear 30 3.6

Pear 29 3.2

Pear 20 3.4

Ex: Use 1-nn to classify a fruit with weight = 26
and Ph = 3.2 using Mahalanobis distance

> V
 [,1] [,2]
[1,] 86.857143 1.1428571
[2,] 1.142857 0.3171429
> solve(V)
 [,1] [,2]
[1,] 0.01208624 -0.04355401
[2,] -0.04355401 3.31010453

Distances of new example from training data:
0.4098897 0.3638739 0.3564671 0.5060608 0.7639527 0.3298123
0.8197794

Answer: it’s closest to example 6 and would be
classified as pear (intuitively reasonable.) But if we
used 3-nn, it would be a tie between the 3 classes, and
4-nn would give apple.

Here, we see one of the drawbacks of knn; lengthy
calculations are required.

20 24 28

3
.0

3
.2

3
.4

3
.6

dat[,1]

d
a

t[,
2

]

• knn is easy to understand.

• if the notion of distance is chosen wisely, the
error of knn is no more than twice the Bayes rate.
This can be used to estimate the Bayes rate.

• Intensive computation is required to apply knn.

• All of the training data needs to be stored in
order to classify new observations.

• You still need to choose the value of k. (See the
example.)

• knn breaks down in high dimensions (the curse
of dimensionality.)

