Principal Components Analysis
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Two types of analysis of multivariate data:
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- One variable is “y” and the others are “x” ’s.
You try to predict the y using the x’s.

aka Supervised learning

- No particular variable is the “y”. You are trying

to understand the data. Maybe even just
visualise it (cf. beginning of the course) maybe

find clusters of related observations.
aka Unsupervised learning



Principal components analysis (PCA) is a very useful
unsupervised technique for visualising your data. It is
a great starting point for almost any statistical work.

Orthogonal projection .
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Do Xenon demo here with rgl




The most basic form of PCA is just projection into
a lower-dimensional subspace. Usually we want
to choose the subspace so that we lose as little
information as possible. Recall the formula for

projection of a vector v in the direction of a
vector w

<v,w>
<w,w?>

w

Suppose we want to project all our data onto a

single w. We impose the condition ||w|| = 1.
(why?)



UC investigating INZ's gross
national happiness

16 April 2013 A University of Canterbury
statistics researcher is taking a statistical
approach to gauge the level of New Zealand's
gross national happiness. (read article]

blore MNews




Assume data are centered (mean of each x; is zero.)
The problem we want to solve is:

Findw = (wy,w,, ...,w,) so that ||w]|| =1 and

(z xi,.w,.)

is as large as possible. [Calculate on board here]. We
need to maximise

w/ ' COV(X)w lw|| =1



If wis an eigenvector of COV(X) with eigenvalue
A then

w CoOV(X)w =w'Aw = Aw'w = A

It turns out that the biggest possible value is the
same as the biggest eigenvalue of COV (X).

Worked example: data (x,y) = (1,0), (0,1), (1,1).
What is the first principal component? What are
the loadings?



(In practice, we don’t need to go through a calculation as the software does it for us.)

Important: usually the variables are scaled to
have variance 1 before doing PCA.




Scaling corresponds to finding eigenvalues and
eigenvectors of the correlation matrix rather than the
covariance matrix. This works better if your data are
on very different scales, but it does mean that the
result of PCA is no longer a projection of your original
data set; it is a re-scaling followed by a projection.

Since PCA is a purely exploratory technique, it is up to
you to decide which version to use.

Another important note:
The principal components are only defined up to +/-1



Higher Principal Components

Usually want to project our data onto a space of
more than one dimension (can plot up to 6
dimensions using colour, but only 2 if we want to
be “unbiased”) The higher principal components
are just the other eigenvectors of the correlation
(or covariance) matrix. These correspond to the
directions in which variance is maximised
conditional on being orthogonal to the previous
ones.



Example

crabs data 1n R. A simple example of a
morphological data set.

> head(crabs)
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> crabs.mm <- crabs[,4:8]
> crabs.pca <- prcomp(crabs.mm, center=T, scale=T)

> str(crabs.pca)

List of 5

$ sdev > num [1:5] 2.1883 0.3895 0.2159 0.1055 0.0414

$ rotation: num [1:5, 1:5] 0.452 0.428 0.453 0.451 0.451 ...

$ center : Named num [1:5] 15.6 12.7 32.1 36.4 14

$ scale : Named num [1:5] 3.5 2.57 7.12 7.87 3.42

$ x > num [1:200, 1:5] -4.92 -4.38 -4.12 -3.87 -3.82 ...

Here, sdev is the square roots of the eigenvalues. The
eigenvalues are often called the “variance explained”. You
can get a plot of them with plot(crabs.pca). This

is called a scree plot. It is often used to choose how many
of the principal components are “important”.



crabs.pca

Many people would say “96% of the
variance is explained by the first
principal component.” Some people
would throw away the other

o components based on this, which
would be a bad idea in this case, as the

0
O}
% second and third principal components
§ N are also very interesting.
— —
O —

> cumsum(crabs.pca$sdev™2)/sum(crabs.pca$sdev/™?)
[1] 0.9577670 0.9881040 0.9974306 0.9996577 1.0000000



> plot(crabs.pca$x[,1], crabs.pca$x[,2], col=as.numeric(crabs$sex)+2, pch=19,
xlab="PC1", ylab=""PC2'")
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Sum of measurements (rmm)

a0 100 120 140 160
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The matrix crabs.pca$x
contains the loadings for the
principal components. Itis a
200 x 5 matrix.

PClis crabs.pca$x[ ,1]
etc.

The first principal
component, PC1,
corresponds to the overall
size of the crab. This is very
common in morphological
data.

PC2 seems to correspond to
the sex of the crab.



The matrix crabs.pca$rotation shows how
the principal components are made up from the
X’S.

> crabs.pca$rotation

PC1 PC2 PC3 PC4 PC5
FL 0.4520437 0.1375813 0.53076841 0.696923372 0.09649156
RW 0.4280774 -0.8981307 -0.01197915 -0.083703203 -0.05441759
CL 0.4531910 0.2682381 -0.30968155 -0.001444633 -0.79168267
CW 0.4511127 0.1805959 -0.65256956 0.089187816 0.57452672
BD 0.4511336 0.2643219 0.44316103 -0.706636423 0.17574331

e.g. PC1=0.45*FL + 0.43*RW + 0.45*CL + 0.45*CW + 0.45*BD

Rear width (RW) is a strong factor in determining
whether a crab is male or female (useful
observation for a scientist!)



> library(rgl)
> plot3d(crabs.pca$x[,1:3], col=as.numeric(crabs$sp) + 2)

PC3 corresponds to the
crab’s species!
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Caution!

It is important not to get carried away when
interpreting the principal components, especially
those which carry a low proportion of the

variance.

Often, these can just be noise.



> biplot(crabs.pca)

Biplot: a plot of the first two principal components with arrows showing how the
variables are made up from the principal components.
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Example:

Using PCA to visualise a six-dimensional time
series.

S
+
8
Data: S
+ p—
8
S
+ - 0]
3
Name expenses  sales g
n o
Small Coffee Co 4323 15357 § 3 o
United Poultry 23388 41494 N o
+ p—
Xmas Holdings 30450 0 & .
OzCorp 5426038 1782330 S | ° 5
(]
%_ 7 o
8 I I I I I

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

expenses



log(sales)

smoothScatter ()

log(sales)

0 2 4 6 8 0 2 4 6 8
log(expenses) log(expenses)
Aim:
e Reduce the dimension by fitting a model with a few
parameters.

e Use the time series of the model parameters to visualise how
the joint distribution changes from month to month



Fit to each month from Jan 2000 to Jul 2013.

Adjust for inflation.

Take moving average (because of seasonality).

Use PCA to reduce from six to three dimensions.

Plot the first 2 principal components (using colour for the third dimension).
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Example: using PCA to visualise Game of Thrones.




http://www. lagardedenuit.com/wiki/Zindex.php?title=Personnages_PoV

Personnage [Dans AGOT Dans ACOK Dans ASOS |Dans AFFC |Dans ADWDE:TZ':;I"S
Eddard 15 0 0 0 0 15
Catelyn 11 7 7 0 0 25
Sansa 6 8 7 304 0 24
Arya 5 10 13 3051 2161 33
Bran 7 7 4 0 3 21
Jon 9 8 12 0 13 42
Daenerys |10 5 6 0 10 31
Tyrion 9 15 11 0 12 47
Theon 0 6 0 0 7121 13
Davos 0 3 6 0 4 13
Samwell [0 0 5 5 0 10
Jaime 0 0 9 7 1 17
Cersei 0 0 0 10 P 12
Brienne 0 0 0 S 0 s
Areo 0 0 0 1181 101 2
Arys 0 0 0 1001 0 1
Arianne 0 0 0 l11] 0 5
Asha 0 0 0 1021 30131 4
Aeron 0 0 0 114 0 >
Victarion |0 0 0 1151 51161 4
vartell 0 0 0 41 4
Jon

amington 0 0 0 0 2081 2
Mélisandre |0 0 0 0 1 1
SB;!j;tan 0 0 0 0 ™ A
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PC1 PC2
Dans.AGOT -0.4508665 -0.0566973
Dans.ACOK -0.5464952 0.1710553
Dans.ASOS -0.4797854 0.4762526
Dans.AFFC 0.2598717 0.8431337
Dans.ADWD -0.4475881 -0.1727268
PCl PC2 PC3 PC4 PC5
Eddard -0.26 -1.04 -2.47 -1.16 -0.23
Catelyn -1.52 0.04 -1.75 0.42 0.07
Sansa -0.89 1.03 -0.90 0.61 0.49
Arya -1.92 1.67 -0.34 1.12 -0.03
Bran -1.16 -0.37 -0.62 0.19 0.47
Jon -3.51 0.05 0.94 -0.64 -0.74
Daenerys -2.23 -0.59 0.19 -1.09 -0.37
Tyrion -4.18 0.27 0.81 -0.07 0.66
Theon -0.39 -0.93 1.15 0.00 0.84
Davos -0.31 -0.28 0.62 0.72 -0.45
Samwell 1.11 1.16 -0.01 0.21 -0.44
Jaime 0.74 2.13 0.25 0.12 -0.89
Cersei 1.87 2.01 0.45 -1.26 0.52
Brienne 1.92 1.51 0.04 -0.68 0.45
Areo 1.16 -0.60 0.04 0.23 -0.01
Arys 1.28 -0.56 -0.14 0.37 0.01
Arianne 1.37 -0.26 -0.12 0.22 0.08
Asha 0.93 -0.69 0.40 -0.04 -0.06
Aeron 1.37 -0.26 -0.12 0.22 0.08
Victarion 1.14 -0.35 0.25 -0.06 0.03
Quentyn Martell 0.72 -1.04 0.56 -0.03 -0.14
Jon Connington 0.95 -0.95 0.20 0.25 -0.10
Mélisandre 1.07 -0.90 0.02 0.39 -0.07
Barristan Selmy 0.72 -1.04 0.56 -0.03 -0.14

PC3 PC4
-0.71665896 -0.5258787
0.03468803 0.3197532
0.02677051 0.3921822
0.07148840 -0.4305571
0.69236509 -0.5310585

PC5

-0.05793421

0.75408071

-0.62327028

0.17635831

-0.09185754

Many interesting features in these data.
Notice how A Feast for Crows (the least
popular book) is quite different from the

others (see biplot.)

How would you interpret the different

Principal Components?



When PCA goes bad?

NZDep2006 combines the following census data (calculated as proportions for
each small area):

Variable description (in order of decreasing weight)

* People aged 18-64 receiving a means tested benefit

* People living in equivalised* households with income below a threshold
* People not living in own home

* People aged <65 living in a single parent family

 People aged 18-64 unemployed

 People aged 18-64 without any qualifications

* People living in equivalised* households below a bedroom occupancy
threshold

* People with no access to a telephone
* People with no access to a car



