
MATH 2220 HW11.

Due Friday 5 December

(1) Let S be the surface obtained by rotating the graph of the function

y = |x|+ 1

about the x–axis between x = −2 and x = 2.

(a) Let F(x, y, z) = (0, (x2 − 2)z, y). Calculate
∫∫

S

curl(F) · dS

with respect to either orientation.

To solve this, we should apply Stokes’ Theorem, which says that
∫∫

S

curl(F) · dS =

∫

∂S

F · dr.

We are free to choose an orientation of the surface S, so let us choose the

orientation so that the normal vector at a point with z = 0 and y > 0 has a

positive y component. This is the “outward” orientation (you should draw a

picture to visualize it). Notice that there isn’t a well-defined normal vector at

every point of S because S is not smooth. This is not a problem, however.

In this example ∂S consists of two circles of radius 3, one in the x = 2 plane

and one in the x = −2 plane. We can parametrize the circle in the x = 2 plane

as (2,
√

3 cos(t),
√

3 sin(t)), 0 ≤ t ≤ 2π. We need to check that this circle has

the correct orientation induced from the orientation we chose on S. At t = 0

we are at the point (2, 1, 0) on the circle and moving “up”, ie in the direction of

increasing z. This is indeed the orientation induced by our choice of orientation

of S. Again, it is a lot easier to see this from a picture!

Let us call the circle in the x = 2 plane C1. Then
∫

C1

F · dr =

∫ 2π

0

(0, 0,
√

3 cos(t)) · (0,−
√

3 sin(t),
√

3 cos(t))dt.

This equals 3
∫ 2π

0
cos2(t)dt = 3π.
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Call the circle in the x = −2 plane C2. This has the parametrization (−2,
√

3 cos(t),
√

3 sin(t)),

0 ≤ t ≤ 2π, except that we have to traverse it in the opposite direction to C1.

So we get ∫

C2

F · dr = −3π.

Therefore,

∫∫

S

curl(F) · dS =

∫

∂S

F · dr =

∫

C1

+

∫

C2

= 3π − 3π = 0.

(b) Let F(x, y, z) = (2x, y + z3ez3
, x). Calculate the outward flux

∫∫

∂B

F · dS

where B is the solid region bounded by S and the planes x = 2 and x = −2.

The divergence theorem tells us that

∫∫

∂B

F · dS =

∫∫∫

B

div(F)dV.

Here div(F) = 2 + 1 = 3, so
∫∫∫

B
div(F)dV = 3

∫∫∫
B

dV . We just need to

calculate the volume of B. This is twice the volume of the solid of revolution

obtained by rotating the graph of y = x + 1, 0 ≤ x ≤ 2, about the x–axis. By

one-variable calculus, this volume is

π

∫ 2

0

(x + 1)2dx =
π

3
(x + 1)3|20 =

26π

3
.

Thus,
∫∫∫

B
dV = 52π/3 and therefore

∫∫
∂B

F · dS =
∫∫∫

B
div(F)dV = 52π.

(2) Let c be a constant and let E = Et and B = Bt be time-dependent vector fields

defined by

Et = ((t + 1)x,−ty,−z)

Bt =
1

c2
(0, 0, yx).

(a) Show that ∇ · E = ∇ ·B = 0

Treating t as a parameter, ∇ · E = div(E) = (t + 1) − t − 1 = 0 and ∇ · B =

0 + 0 + ∂
∂z

1
c2

yx = 0.
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(b) Show that ∇× E = −∂B
∂t

and ∇×B = 1
c2

∂E
∂t

.

∇× E =

∣∣∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

(t + 1)x −ty −z

∣∣∣∣∣∣∣∣∣
= 0

which equals −∂B
∂t

since B is independent of t.

Also,

∇×B =

∣∣∣∣∣∣∣∣∣

i j k

∂x ∂y ∂z

0 0 1
c2

xy

∣∣∣∣∣∣∣∣∣
=

1

c2
(x,−y, 0) =

1

c2

∂E

∂t

(c) Let S be any oriented surface. Show that
∫∫

S

E · dS = (t + 1)c2

∮

∂S

B · dr +

∮

∂S

yzdx.

One way to do this is to write

E = (t + 1)(x,−y, 0) + (0, y,−z) = (t + 1)
∂E

∂t
+ (0, y,−z).

By the previous problem, this equals (t + 1)c2(∇×B) + (0, y,−z). Therefore,
∫∫

S

E · dS = (t + 1)c2

∫∫

S

(∇×B) · dS +

∫∫

S

(0, y,−z) · dS.

Observe that curl(yz, 0, 0) = (0, y,−z). Therefore,
∫∫

S

E · dS = (t + 1)c2

∫∫

S

curl(B) · dS +

∫∫

S

curl(yz, 0, 0) · dS.

By Stokes’ Theorem, this equals

(t + 1)c2

∮

∂S

B · dr +

∮

∂S

(yz, 0, 0) · dr = (t + 1)c2

∮

∂S

B · dr +

∮

∂S

yzdx.

(The final step is just a change of notation.)
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