MATH 2220 HW2 SOLUTIONS.

Homework 2. Due Wednesday 10 September.

- (1) Section 2.1 p. 105–107
	- $(a) \# 2a$.

If $c < 1$, then the level curve is empty. If $c = 1$ then the level "curve" is a single point $(0,0)$. If $c > 1$ then the level curve is a circle with midpoint $(0,0)$ and radius $\sqrt{c-1}$.

(b) $\#$ 17.

The question asks us to draw the set of points $\{(x, y, z) \in \mathbb{R}^3 : z = |y|\}$. The sections $x = k$ for $k \in \mathbb{R}$ are the graph of $z = |y|$ in the yz-plane, for every value of k. So the overall shape is a cylinder with cross-section the graph of $z = |y|$, that is, a \vee -shape.

 $(c) \# 30.$

This is an ellipsoid, as described in lectures. You should draw a sketch and label the points where the ellipsoid intersects the three coordinate axes. Notice that the cross-sections in the planes $y = constant$ are circles.

- (2) Section 2.2, p. 125–127.
	- $(a) \# 8a.$

If $xy \neq 0$ then

$$
\frac{(x+y)^2 - (x-y)^2}{xy} = \frac{4xy}{xy} = 4
$$

so the limit exists and equals 4.

(b) $\# 16b$.

Oops! This is an ordinary function from $\mathbb R$ to $\mathbb R$. I meant to set 17(c). Anyway, f is continuous because of the rules for combining continuous functions that we had in lectures. The one subtlety is that $2 - \sin(x)$ has to be nonzero on the whole of R. This is true because $sin(x)$ only takes values between -1 and 1 and so $2 - \sin(x)$ can never equal zero.

- (3) For each of the following sets S , state whether S is open, closed or neither. Draw a sketch of S. What is the boundary of S? (You should justify your answers, but detailed proofs are not required.)
	- (a) $S =$ the set of points (x, y) in \mathbb{R}^2 which satisfy $x \ge 0$ and $y < 0$. The boundary of S is $\{(x, 0) : x \ge 0\}$ together with $\{(0, y) : y \le 0\}$. S is neither open nor closed; it contains some of its boundary points on the x -axis, but does not contain some of them on the y–axis. A rigorous proof is not required.
	- (b) $S =$ the line $2x + 3y = 5$.

This was meant to be in \mathbb{R}^2 , but the same answer works in \mathbb{R}^3 . Here S is a closed set. This is because if P is some point not on the line then there is a point Q on the line which is closer to P than all the other points on the line. The distance $dist(P,Q)$ is positive, so if $r = dist(P,Q)/2$ then $D_r(P)$ is an open ball containing P which does not contain any point of S. Thus, the complement of S is open, so S is a closed set. The boundary of S consists of S itself (we have already shown that no point not in S can be a boundary point. Every point R of S is a boundary point because every ball centred at R must contain a point on the line S and a point not on S as well. Again, a rigorous proof is not required.)

(c) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Recall that this means: "S is the set of points (x, y) in \mathbb{R}^2 which satisfy $x^2 + y^2 < 1$."

This is the open disc $D_1((0,0))$. See the lecture notes for this example. The boundary is the circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$