MATH 2220 HW3.

Due Wednesday 17 September

(1) Find

$$
\lim_{(x,y)\to(0,0)}\frac{x}{x^2+y^2}
$$

or show that it does not exist.

The limit does not exist. For example, if we approach $(0,0)$ along the path $x=0$, the limit is 0. If we approach along the path $y =$ √ \overline{x} , the limit is 1. If we approach along the path y = 0, we get a limit of ∞ . If we approach along the path y = $-x$, we get a limit of $-\infty$. Considering any two of these paths is enough to show that the limit cannot exist.

- (2) Section 2.3, p. 139-141
	- $(a) \# 1(d).$

By the product and chain rules for differentiation of one-variable functions, we $get \frac{\partial f}{\partial x} = 2x \log(x^2 + y^2) + 2x \text{ and } \frac{\partial f}{\partial y} = 2y \log(x^2 + y^2) + 2y.$

(b) $\# 4(b)$.

The domain of f is $U = \{(x, y) \in \mathbb{R}^2 : x \neq 0 \text{ and } y \neq 0\}$. The partial derivatives exist and are continuous at every point of U, so f is C^1 on U and therefore differentiable on U.

 $(c) \# 5.$

 $\frac{\partial z}{\partial x}|_{(3,1,10)} = 2x|_{(3,1,10)} = 6$ and $\frac{\partial z}{\partial y}|_{(3,1,10)} = 3y^2|_{(3,1,10)} = 3$. By a formula from the lectures, the tangent plane is given by

$$
6(x-3) + 3(y-1) - (z-10) = 0.
$$

(d) $\# 7(c)$.

The matrix of partial derivatives is

$$
\begin{bmatrix} 1 & 1 & e^z \\ 2xy & x^2 & 0 \\ 1 & 1 & 1 \end{bmatrix}
$$

 $(e) \# 9.$ $\frac{\partial z}{\partial x}|_{(1,1,1)} = 1$ and $\frac{\partial z}{\partial y}|_{(1,1,1)} = -1$, so the tangent plane at $(1,1,1)$ is $(x-1)-(y-1)-(z-1)=0$

by the formula from lectures. This may be rewritten as $x - y - z = -1$. The z-axis is the line defined by the equations $x = y = 0$, so the required point has z–coordinate $0-0-z=-1 \implies z=1$. Therefore, the plane meets the z–axis at the point $(0, 0, 1)$.

(3) The temperature at a point $(x, y, z) \in \mathbb{R}^3$ is given by $T(x, y, z) = e^{(10-x)^2} + e^{-y^2} + e^{-z^2}$. (a) A flamingo flies along the path

$$
f(t) = (0, t, t^2 + 5).
$$

Find the rate of change of temperature experienced by the flamingo at $t = 0$, ie. find $\frac{d}{dt}|_{t=0}(T \circ f(t)).$ By the chain rule,

$$
\frac{d}{dt}|_{t=0}(T \circ f(t)) = D(T \circ f)(0) = DT(f(0))Df(0).
$$
\n
$$
\text{We have } f(0) = (0, 0, 5) \text{ and } Df(t) = \begin{pmatrix} 0 \\ 1 \\ 2t \end{pmatrix}. \text{ So } Df(0) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.
$$
\nAlso,
$$
DT(x, y, z) = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) = \left(-2(10-x)e^{(10-x)^2}, -2ye^{-y^2}, -2ze^{-z^2}\right). \text{ Therefore, } DT(0, 0, 5) = (-20e^{100}, 0, -10e^{-25}). \text{ Putting this together, we get}
$$

$$
DT(f(0))Df(0) = (-20e^{100}, 0, -10e^{-25})\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0.
$$

(b) A goose flies along the path

$$
g(t) = (t^3, \sin(t), 5e^t + t^3 + t^2 - 5t).
$$

Find the rate of change of temperature experienced by the goose at $t = 0$.

This is rather a difficult calculation without the chain rule. As in part (a) , we have

$$
\frac{d}{dt}|_{t=0}(T \circ g(t)) = D(T \circ g)(0) = DT(g(0))Dg(0).
$$

But $g(0) = (0, 0, 5) = f(0)$ and $Dg(0) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = Df(0)$. So $DT(g(0))Dg(0) =$

 $DT(f(0))Df(0)$ which we have already computed to be 0.

(c) Suppose that the temperature (in degrees) was given by some other function $T_1(x, y, z)$ and that the flamingo experienced a rate of change of temperature of 5 degrees per second at $t = 0$. Is it possible to determine the rate of change of temperature experienced by the goose at $t = 0$? Explain.

Provided T_1 is a differentiable function, we know that the rate of change of temperature experienced by the goose is also 5 degrees per second. This is because we have shown that $f(0) = g(0)$ and $Df(0) = Dg(0)$, so that

$$
\frac{d}{dt}|_{t=0}(T_1 \circ g(t)) = D(T_1 \circ g)(0) = DT_1(g(0))Dg(0)
$$

which equals

$$
DT_1(f(0))Df(0) = D(T_1 \circ f)(0) = \frac{d}{dt}|_{t=0}(T_1 \circ f(t)).
$$

Thus the rates of change of temperature experienced by the goose and the flamingo at $T = 0$ are always the same.

Note that this answer makes sense, because the two birds are at the same point at $t = 0$ and flying with the same speed and in the same direction, so it is logical that they should experience the same rate of change of temperature at that instant.