
MATH 2220 HW6.

Due Wednesday 15 October

(1) Section 3.5, p. 253-255.

(a) # 8.

The inverse function theorem tells us that we need to check that the matrix



1 + yz xz xy

y 1 + x 0

2 0 1 + 6z




is invertible at (0, 0, 0). Plugging in these values, the matrix becomes



1 0 0

0 1 0

2 0 1




which is invertible since it has determinant 1. So the answer is yes, the equations

do define x, y, z as functions of u, v, w near (0, 0, 0).

(b) # 12.

Let F1 = xy2 + xzu + yv2 − 3 and let F2 = u3yz + 2xv − u2v2 − 2. The implicit

function theorem tells us that we must check that the matrix

(F1)u (F2)v

(F2)u (F2)v




is invertible. This matrix is
 xz 2yv

3uyz − 2uv2 2x− 2u2v




At the given point (1, 1, 1, 1, 1), this equals

1 2

1 0




which is an invertible matrix. So the answer is yes.
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Differentiating F1 = 0 and F2 = 0 with respect to y, keeping y and z constant,

yields

2xy + xz
∂u

∂y
+ v2 + 2yv

∂v

∂y
= 0

3u2yz
∂u

∂y
+ u3z + 2x

∂v

∂y
− 2uv2∂u

∂y
− 2vu2 ∂v

∂y
= 0

Substituting in (1, 1, 1, 1, 1) yields the two equations

3 +
∂u

∂y
|(1,1,1) + 2

∂v

∂y
|(1,1,1) = 0

∂u

∂y
|(1,1,1) + 1 = 0

The second equation gives ∂u
∂y
|(1,1,1) = −1. Substituting in the first equation gives

∂v
∂y
|(1,1,1) = −1 as well.

(2) Review Exercises, p. 255-259.

(a) # 5.

First we need to differentiate and set ∇z = 0 to find the critical points.

zx =
x3 − x2 − 2x

1 + 4y2

and

zy =
1

12
(3x4 − 4x3 − 12x2 + 18)

−8y

(1 + 4y2)2
.

Therefore, zx = 0 implies x(x2− x− 2) = 0 = x(x− 2)(x + 1) so x = 0 or x = 2

or x = −1. None of these values of x is a root of 3x4 − 4x3 − 12x2 + 18, and

therefore, if zy = 0 as well, we must have y = 0. So we find three critical points,

namely (0, 0), (2, 0) and (−1, 0).

We differentiate again to find the Hessian matrix:

zxx =
3x2 − 2x− 2

1 + 4y2

and

zyx = (x3 − x2 − 2x)
−8y

(1 + 4y2)2

(note that this is 0 at all critical points, since y = 0 there). Finally,

zyy =
1

12
(3x4 − 4x3 − 12x2 + 18).− 8.(1 + 4y2)−2((1 + 4y2) + 8y(· · · )).
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We obtain the Hessian matrices:

at (0, 0), 
−2 0

0 −8.18/12




so (0, 0) is a local maximum.

At (−1, 0), 
3 0

0 −8.13/12




so (0, 0) is a saddle.

At (2, 0), 
6 0

0 8.14/12




so (0, 0) is a local minimum.

(b) # 15.

We minimize the squared distance x2 + y2 + z2 from the point (x, y, z) to the

origin, subject to the constraint that (x, y, z) lies on the surface z2 − xy = 1.

Lagrange multipliers tell us to look for solutions of the equation

(2x, 2y, 2z) = λ(−y,−x, 2z)

Thus we get the four equations

2x = −λy

2y = −λx

2z = 2λz

z2 − xy = 1

From the first two equations, we get 4x = λ2x, whence x = 0 or λ = ±2. If x = 0

then 2y = −λx = 0 so y = 0 and z2−0 = 1 so z = ±1. Thus, the minimum may

occur at the points (0, 0,±1). The other possibility is λ = ±2. Then 2z = 2λz

implies z = 0 and so xy = −1. So y = −1/x and 2x = −2λy = λ/x which

implies 2x2 = λ ≥ 0. So λ = 2 and x = ±1. Then 2y = −λx = −2x implies

y = −x. So we get two more candidate points, namely (−1, 1, 0) and (1,−1, 0).
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Evaluating the distance from the four points we have found to the origin, we find

that the minimum distance occurs at the points (0, 0,±1). Thus, these two points

are the closest to the origin on the given surface.

(c) # 22.

We wish to optimize the function f(x, y) = xy−y+x−1 = (x−1)(y+1) subject

to x2 + y2 ≤ 2. First, we look for critical points in the open disc x2 + y2 < 2.

We have ∇f = (y + 1, x− 1) so the only critical point is (1,−1). This does not

lie in the open disc, and therefore the maximum and minimum must occur on

the boundary. Now we look at the boundary curve x2 + y2 = 2. We use Lagrange

multipliers with the constraint g(x, y) = x2 + y2 = 2. The equation ∇f = λ∇g

gives (y +1, x−1) = λ(2x, 2y). Now, neither x nor y can be zero, or else x2 +y2

cannot equal 2. Therefore, y+1
2x

= x−1
2y

. This gives 2y2 + 2y = 2x2 − 2x, whence

(y − x)(y + x) = y2 − x2 = −x − y = −(y + x). So either y + x = 0, or we

can divide by y + x to get y − x = −1. From these two possibilities, we get the

points (1,−1), (−1, 1), (1 +
√

2,
√

2) and (1 −√2,−√2). Comparing the values

of the function at these points gives an absolute minimum of −4 and an absolute

maximum of
√

2(
√

2 + 1).

(3) Find the maximum and minimum values of the function f(x, y) = ex + e−y on the

line segment in R2 joining (−1,−1) to (1, 1).

The line segment is a closed and bounded set, but it has no interior since it is equal

to its own boundary. Usually to find the maximum and minimum we would look at

the interior first, but here we can skip that step and go straight to the boundary. We

can write the given line segment as (−1 + t,−1 + t) with 0 ≤ t ≤ 2. So the problem

becomes to find the maximum and minimum values of the function et−1 + e1−t on the

closed interval [0, 2]. We first set the derivative equal to 0 and get et−1 − e1−t = 0,

whence e2(t−1) = 1. This has the solution t = 1. We also need to check the values of

the function at the endpoints. When t = 0, we get e−1 + e, when t = 2 we get e+ e−1,

and at the point t = 1, we get 2. Thus the maximum is e + e−1 and the minimum is

2.
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(4) Use Lagrange multipliers to show that the distance from the point (x0, y0, z0) to the

plane Ax + By + Cz + D = 0 is

|Ax0 + By0 + Cz0 + D|√
A2 + B2 + C2

Let (x, y, z) be an arbitrary point on the plane. Our aim is to minimize the square

of the distance from (x, y, z) to (x0, y0, z0) subject to the constraint that (x, y, z) lies

in the plane. That is, we must minimize f(x, y, z) = (x− x0)
2 + (y− y0)

2 + (z− z0)
2

subject to Ax + By + Cz + D = 0. We introduce a Lagrange multiplier λ and obtain

the equation

2(x− x0, y − y0, z − z0) = λ(A,B,C)

Solving this gives

x = x0 + λ
A

2

y = y0 + λ
B

2

z = z0 + λ
C

2

Substituting into the constraint Ax + By + Cz + D = 0 gives

Ax0 + By0 + Cz0 + D +
λ

2
(A2 + B2 + C2) = 0

and thus

λ =
−2(Ax0 + By0 + Cz0 + D)

A2 + B2 + C2

The square of the distance from (x, y, z) to (0, 0, 0) is now given by

(λA/2)2 + (λB/2)2 + (λC/2)2 =
λ2

4
(A2 + B2 + C2).

Substituting in the value we have found for λ gives

(Ax0 + By0 + Cz0 + D)2

A2 + B2 + C2
.

The distance itself is the square root of this, which is

|Ax0 + By0 + Cz0 + D|√
A2 + B2 + C2

as required.
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