MATH 2220 HW9.

Due Wednesday 19 November

- (1) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the semicircle $x^2 + y^2 = 1$, $y \ge 0$, oriented anticlockwise, and $\mathbf{F}(x, y) = (-y, x)$.
- (2) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve in \mathbb{R}^3 given by the parametrization $c(t) = (t, t^2, t^3)$, $0 \le t \le 1$ and $\mathbf{F}(x, y, z) = (z, 1, x^2)$.
- (3) A wire whose shape is given by the curve $(t, \log(t), t^2 1), 1 \le t \le 2$, is made of a material whose density at the point (x, y, z) is $f(x, y, z) = e^{2y}$. Find the mass

$$\int_C f(x,y,z)ds$$

of the wire.

(4) A triangle T with vertices (0,0,0), (1,1,1) and (-1,-1,1) is made of the same material as in the previous question. Find the mass

$$\iint_T f(x, y, z) dS$$

of the triangle. (Hint: an indefinite integral of ue^u is $(u-1)e^u$.)

(5) Let *B* be the solid region satisfying the equations $z \ge 0$ and $1 \le x^2 + y^2 + z^2 \le 4$. Let *S* be the surface of *B*, oriented outward. Calculate the flux through *S* of the vector field $\mathbf{F}(x, y, z) = (z, 0, -1)$. (Hint: *S* should be split into three parts; a hemisphere of radius 1, a hemisphere of radius 2, and an annulus (ring) in the *xy*-plane.)