
MATH 2220 HW9.

Due Wednesday 19 November

(1) Find
∫

C
F · dr where C is the semicircle x2 + y2 = 1, y ≥ 0, oriented anticlockwise,

and F(x, y) = (−y, x).

C may be parametrized as c(t) = (cos t, sin t) with 0 ≤ t ≤ π. So the desired

integral is ∫ π

0

(− sin t, cos t) · (− sin t, cos t)dt =

∫ π

0

dt = π.

(2) Find
∫

C
F·dr where C is the curve in R3 given by the parametrization c(t) = (t, t2, t3),

0 ≤ t ≤ 1 and F(x, y, z) = (z, 1, x2).

This time, we are given the parametrization already. c′(t) = (1, 2t, 3t2) so the

integral is
∫ 1

0

(t3, 1, t2) · (1, 2t, 3t2)dt =

∫ 1

0

(t3 + 2t + 3t4)dt = 1/4 + 1 + 3/5 = 37/20.

(3) A wire whose shape is given by the curve (t, log(t), t2 − 1), 1 ≤ t ≤ 2, is made of a

material whose density at the point (x, y, z) is f(x, y, z) = e2y. Find the mass
∫

C

f(x, y, z)ds

of the wire.

Here c(t) = (t, log(t), t2 − 1) and so c′(t) = (1, 1/t, 2t). Therefore, ‖c′(t)‖ =
√

1 + 1/t2 + 4t2 =
√

1 + t2 + 4t4/t. The mass of the wire is given by the integral

∫ 2

1

f(c(t))‖c′(t)‖dt =

∫ 2

1

t
√

1 + t2 + 4t4dt.

This can be evaluated by using a trick: put t =
√

u. Then dt = 1
2
u−1/2du and so the

integral becomes

1

2

∫ 4

1

√
1 + u + 4u2du.

By number 66 in the table of integrals, this equals

[
8u + 1

16

√
4u2 + u + 1

]4

1

+
3

16

∫ 4

1

du√
1 + u + 4u2

.
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By number 65, the second term may be evaluated:

∫ 4

1

du√
1 + u + 4u2

=

[
1

2
log |8u + 1 + 4

√
4u2 + u + 1|

]4

1

.

So the answer may be calculated exactly. Although I may well have made a numerical

error, I got

33

32

√
69− 7

32

√
6 +

3

64
log

(
33 + 4

√
69

9 + 4
√

6

)
.

(4) A triangle T with vertices (0, 0, 0), (1, 1, 1) and (−1,−1, 1) is made of the same

material as in the previous question. Find the mass
∫∫

T

f(x, y, z)dS

of the triangle. (Hint: an indefinite integral of ueu is (u− 1)eu.)

This is more difficult than the previous problems because we first need to find a

parametrization of the surface. Here is one way to do it. First, we find the equation of

the plane that contains our triangle. This plane is given by Ax+By+Cz+D = 0 for

some choice of A,B,C,D. Plugging in the three points gives D = 0 and A+B+C = 0

and A + B − C = 0. So we get that the equation of the plane is x− y = 0. We can

therefore parametrize the whole plane by Φ(u, v) = (u, u, v). But we want just the

triangle given in the question, not the whole plane. How to proceed? One way is to

take the projection of our triangle onto the plane y = 0 (the xz–plane). This is the

triangle in the uv–plane with vertices (0, 0), (1, 1) and (−1, 1). This may be written

as an u–simple region, namely 0 ≤ v ≤ 1, −v ≤ u ≤ v. Therefore, our whole triangle

is described by Φ(u, v) = (u, u, v) where 0 ≤ v ≤ 1, −v ≤ u ≤ v.

Now we compute Φu = (1, 1, 0), Φv = (0, 0, 1) and Φu × Φv = (1,−1, 0). Thus,

‖Φu × Φv‖ =
√

2. Our integral is therefore

∫ 1

0

∫ v

−v

e2u
√

2dudv =

∫ 1

0

1√
2
(e2v − e−2v)dv =

1√
2
(e2/2 + e−2/2− 1).

We didn’t need to use the hint! (But we could have, if we had split the region of

integration into a pair of v–simple regions instead.)

(5) Let B be the solid region satisfying the equations z ≥ 0 and 1 ≤ x2 +y2 +z2 ≤ 4. Let

S be the surface of B, oriented outward. Calculate the flux through S of the vector
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field F(x, y, z) = (z, 0,−1). (Hint: S should be split into three parts; a hemisphere

of radius 1, a hemisphere of radius 2, and an annulus (ring) in the xy–plane.)

Following the hint, S has three parts. One is the hemisphere x2 + y2 + z2 = 4,

z ≥ 0. Call it S2. There is also the hemisphere S1 given by x2 + y2 + z2 = 1, z ≥ 0.

Finally, there is the ring R given by 1 ≤ x2 + y2 ≤ 4, z = 0.

The total flux is

∫∫

S

F · dS =

∫∫

S1

F · dS +

∫∫

S2

F · dS +

∫∫

R

F · dS.

Each part has to be calculated separately.

To calculate
∫∫

S2
F·dS, we use spherical coordinates. S2 is given by the parametriza-

tion

(x, y, z) = Φ(θ, φ) = (2 cos(θ) sin(φ), 2 sin(θ) sin(φ), 2 cos(φ))

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. By a calculation similar to one from the lectures,

Φθ × Φφ = −2 sin(φ)Φ(θ, φ).

We want the outward normal, which should have a positive z–component on this part

of the surface, so we should choose −Φθ × Φφ as the normal. The flux through S2 is

then ∫ 2π

0

∫ π/2

0

(2 cos(φ), 0,−1) · 2 sin(φ)Φ(θ, φ)dφdθ.

This equals

∫ 2π

0

∫ π/2

0

(4 cos(φ) sin2(φ) cos(θ)− 4 sin(φ) cos(φ))dφdθ.

The first term disappears because cos(θ) gets integrated from 0 to 2π. So we are left

with −8π
∫ π/2

0
sin(φ) cos(φ)dφ = −4π

∫ π/2

0
sin(2φ)dφ = −4π.

The flux through S1 is calculated similarly. The only differences are that we should

take the normal with negative z–component, and that there is no factor of 2 in the

parametrization. If you do this calculation, you will end up with π as the answer.

Finally, to do the flux through R, we parametrize R by

Φ(r, θ) = (r cos(θ), r sin(θ), 0)
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with 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. This is just polar coordinates in the plane. We have

Φr × Φθ = rk.

We want the normal to point straight downwards, so we should take −rk. Now we

compute the flux through R:
∫∫

R

F · dS =

∫ 2π

0

∫ 2

1

(0, 0,−1) · (0, 0,−r)drdθ =

∫ 2π

0

∫ 2

1

rdrdθ.

The value of this integral is 3π.

Thus, the total flux is
∫∫

S1

F · dS +

∫∫

S2

F · dS +

∫∫

R

F · dS = −4π + π + 3π = 0.

Note: when we have the divergence theroem, we will be able to do this calculation

much more easily. Namely, the flux through S is equal to the integral of the scalar

function div(F) over the region B. But div(F) = 0 so the flux must be 0.
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