MATH 2220 PRELIM (PRACTICE)

You have 1 hour 30 minutes to complete this exam. The exam starts at 7:30pm. Each question is worth 20 marks. There are 5 questions in total. The exam is printed on both sides of the paper.

Good luck!

- (1) State whether the following are true or false and justify your answer:
	- (a) The volume of the parallelepiped spanned by the vectors $(0, 0, 1)$, $(0, 1, 1)$ and $(-1, -1, -1)$ is 1.
	- (b) The length of the vector $\mathbf{i} \times \mathbf{j}$ is $\sqrt{2}$.
	- (c) If L_1 and L_2 are distinct lines through the origin in \mathbb{R}^3 then there exists a unique plane containing L_1 and L_2 .
	- (d) If **a** and **b** are vectors in \mathbb{R}^3 then $|\mathbf{a} \cdot \mathbf{b}| \le ||\mathbf{a}|| ||\mathbf{b}||$.
	- (e) If **a**, **b** and **c** are vectors in \mathbb{R}^3 then

$$
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}.
$$

(2) Define $f : \mathbb{R}^3 \to \mathbb{R}$ by

$$
f(x, y, z) = x^2 + y^2 - 1.
$$

Let S be the surface $f = 0$ in \mathbb{R}^3 .

Also define $c : \mathbb{R} \to \mathbb{R}^3$ by $c(t) = (\sin(t), \cos(t), t)$.

- (a) Show that $c(t)$ lies on the surface S for every $t \in \mathbb{R}$.
- (b) Find the tangent vector $c'(t_0)$ to $c(t)$ at an arbitrary $t_0 \in \mathbb{R}$.
- (c) Find the tangent plane to S at a point (x_0, y_0, z_0) on S.
- (d) Bob says that $c'(\pi)$ must lie in the tangent plane to S at $(0, -1, \pi)$, because a theorem from the lectures says so. Joe disagrees; he points out that the tangent plane to S at $(0, -1, \pi)$ is given by $y = -1$, but $c'(\pi) = (-1, 0, 1)$, which does not lie in the tangent plane. A heated argument erupts. How would you defuse the situation? [TURN OVER]
- (3) (a) Find the Hessian matrix of $f(x, y) = x^3 + y^4 + 2xy$ at (0,0).
	- (b) Find the tangent plane P_b to the surface $z = x^3 + y^4 + 2xy$ at $(1, -1, 0)$.
	- (c) Find the distance from the point $(0, 0, 0)$ to the plane P_b .
- (4) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function with

$$
f(1,0) = -2
$$

$$
\frac{\partial f}{\partial x}|_{(1,0)} = 7
$$

$$
\frac{\partial f}{\partial y}|_{(1,0)} = 2
$$

Define $g : \mathbb{R}^3 \to \mathbb{R}$ by

$$
g(x, y, z) = (f(x, y))^{2} + 4f(x, y) + 5z.
$$

- (a) Define $u : \mathbb{R}^2 \to \mathbb{R}$ by $u(a, b) = a^2 + 4a + 5b$. Find a function $v : \mathbb{R}^3 \to \mathbb{R}^2$ such that $g = u \circ v$.
- (b) State the chain rule for the composition $q = u \circ v$.
- (c) Find $\nabla q(1,0,0)$.
- (d) Find the directional derivative of g at the point $(1, 0, 0)$ in the direction of the vector $(1, 1, 1)$.
- (5) The height z of a mountain (in feet) is given by

$$
z = f(x, y) = 2000(e^{-x^2 - y^2}).
$$

- (a) Draw the level curve $f(x, y) = k$ for the value $k = 1000$.
- (b) Calculate ∇f .
- (c) Klaus is standing at the point on the mountain with $x = 0$ and $y = 5$. If he starts walking in the direction $(1, 5)$, what is the gradient (ie. what is the rate of change of f in the direction $(1, 5)$?

[END OF PAPER.]

EXTRA QUESTIONS

- (1) If **a** is a vector in \mathbb{R}^3 , show that there exist vectors **b** and **c** with $\mathbf{a} = \mathbf{b} \times \mathbf{c}$.
- (2) If **a** is a vector in \mathbb{R}^3 and we know $\mathbf{a} \times \mathbf{i}$ and $\mathbf{a} \times \mathbf{j}$, do we know \mathbf{a} ?
- (3) If **a** is a vector in \mathbb{R}^3 and we know $\mathbf{a} \cdot \mathbf{i}$ and $\mathbf{a} \cdot \mathbf{j}$, do we know \mathbf{a} ?
- (4) If **a** is a vector in \mathbb{R}^3 and we know $\mathbf{a} \times \mathbf{i}$ and $\mathbf{a} \times \mathbf{j}$ and $\mathbf{a} \times \mathbf{k}$, do we know \mathbf{a} ?
- (5) If **a** is a vector in \mathbb{R}^3 and we know $\mathbf{a} \cdot \mathbf{i}$ and $\mathbf{a} \cdot \mathbf{j}$ and $\mathbf{a} \cdot \mathbf{k}$, do we know \mathbf{a} ?
- (6) State the formula for the distance from a given point in \mathbb{R}^3 to a given plane.
- (7) Find the area of the triangle with vertices $(4, 4, 3)$, $(2, 0, 9)$ and $(3, 1, 5)$.
- (8) Find the area of the triangle in \mathbb{R}^2 with vertices $(9, 9)$, $(3, 3)$ and $(7, 1)$.
- (9) A mathematician tells you that

$$
\lim_{(x,y)\to(0,0)}\frac{\sin(xy)}{xy} = 1.
$$

Explain precisely what is meant by this statement.

- (10) Sketch the surface $y = (z 1)^2$ in \mathbb{R}^3 .
- (11) Find the tangent plane to the ellipsoid

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
$$

at an arbitrary point (x_0, y_0, z_0) .

(12) Given two planes

$$
A_1x + B_1y + C_1z + D_1 = 0
$$

$$
A_2x + B_2y + C_2z + D_2 = 0
$$

in \mathbb{R}^3 , let $\mathbf{n_1} = (A_1, B_1, C_1)$ and $\mathbf{n_2} = (A_2, B_2, C_2)$. Show that the two planes intersect if and only if $n_1 \times n_2 \neq 0$.

(13) Either calculate the value of

$$
\lim_{(x,y)\to(0,0)}\frac{x^{1/3}+y^{1/3}}{x^{2/3}+y}
$$

or show that it does not exist.

(14) Show that the function $f(x, y, z) = \frac{1}{z}(e^x + y + y^2)$ is C^1 where defined, and calculate its derivative at an arbitrary point in its domain.

(15) Explain why the set

$$
\{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}
$$

is open, where $a < b$ and $c < d$. Draw a sketch of the set.

(16) (Final exam 07)

Let $f(x, y)$ be a C^2 function of two variables satisfying $f(3, -2) = 1$, $f_x(3, -2) = 2$, $f_y(3,-2) = 1$, $f_{xx}(3,-2) = 3$, $f_{yy}(3,-2) = 2$, $f_{xy}(3,-2) = 4$. Define $g : \mathbb{R}^2 \to \mathbb{R}$ by $g(u, v) = f(u + 2v, u - 3v).$

Use the chain rule to compute the derivative matrix Dg at $(1, 1)$. Also, calculate the value of g_{uv} at $(1, 1)$.

(17) You have a nightmare in which a mysterious cloaked figure threatens to destroy the universe unless you can calculate $f_{xyzxyzxyz}$ within the next ten seconds, where

$$
f(x, y, z) = \sin(x + 2y + \tan^{-1}(xy^5))e^{400x + (xy + 9)^8}(z^2 + 94z - 9).
$$

How should you respond?

- (18) Define $g : \mathbb{R}^2 \to \mathbb{R}^2$ by $(x, y) = g(r, \theta) = (r \cos(\theta), r \sin(\theta))$. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = x^4 + 3xy^2 - y^4$. Find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$.
- (19) Use the definition of the derivative to check that the derivative of $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x(y + 1)$ at $(0, 0)$ is $\begin{bmatrix} 1 & 0 \end{bmatrix}$.
- (20) p.172, $\#$ 16.
- (21) For more practice problems, look at the Review Exercises on pp. 173-180 of the textbook.