
MATH 2220: GUIDE TO INTEGRALS

There are many kinds of integrals in this course. This brief guide is supposed to help you

to tell them apart.

(1) Standard integral of a function f(x) of one variable on an interval [a, b].

∫ b

a

f(x)dx.

Represents area under the graph of f between x = a and x = b.

(2) Path integral of a scalar function f along a curve C with parametrization c(t), a ≤
t ≤ b in R3. ∫

C

f(x, y, z)ds =

∫ b

a

f(c(t))‖c′(t)‖dt.

Represents mass of a wire with shape C and density f(x, y, z).

Path integral of a scalar function f along a curve C with parametrization c(t),

a ≤ t ≤ b in R2. ∫

C

f(x, y)ds =

∫ b

a

f(c(t))‖c′(t)‖dt.

Represents area of a curtain with base C and height f(x, y).

These two integrals don’t depend on the choice of parametrization of C. Special

case: f = 1 gives arc length.

(3) Path (or line) integral of a vector field F along a curve C with parametrization c(t),

a ≤ t ≤ b in R3. ∫

C

F · dr =

∫ b

a

F(c(t)) · c′(t)dt.

• Represents work done by F on a particle moving along C.

• Depends on orientation (direction) of C, but not on the choice of parametriza-

tion.

• other notations:

∫

C

F · dr =

∫

C

F · ds =

∫

C

(F1dx + F2dy + F3dz).
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• If C is a simple closed curve, this integral is sometimes written
∫

C

F · dr =

∮

C

F · dr.

(4) Double integral of a function f(x, y) over a region Ω ⊂ R2.
∫∫

Ω

f(x, y)dA.

Calculated by writing our region as x–simple or y–simple, also sometimes by con-

version to polar coordinates or other change of variable. Special case: f = 1 gives

area.

Change of variable formula: if T : D → T (D) is one-to-one then
∫∫

T (D)

f(x, y)dA =

∫∫

D

f(T (u, v))|DT (u, v)|dudv.

(5) Integral of a scalar function f(x, y, z) over a parametrized surface S with parametriza-

tion Φ(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D ⊂ R2.
∫∫

S

f(x, y, z)dS =

∫∫

D

f(Φ(u, v))‖Φu × Φv‖dudv.

Represents mass of S if S has density f(x, y, z) at a point (x, y, z). Doesn’t depend

on choice of orientation. Special case: f = 1 give surface area.

(6) Integral of a vector field F over a parametrized surface S with parametrization

Φ(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D ⊂ R2.
∫∫

S

F · dS =

∫∫

S

F · ndS =

∫∫

D

F(Φ(u, v)) · (Φu × Φv)dudv.

where n is a unit normal in the direction Φu × Φv.

• Depends on a choice of unit normal (orientation). Otherwise independent of the

parametrization chosen.

• Represents the flux of the field F through S.

(7) Triple integral of a scalar function f(x, y, z) over a region B ⊂ R3.
∫∫∫

B

f(x, y, z)dV.

Represents mass of a solid with shape B and density f . Special case: f = 1 gives

volume. Change of variable formula similar to the two-variable case. Two special

changes of variables are cylindrical and spherical coordinates.
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Cylindrical:

∫∫∫

B

f(x, y, z)dV =

∫∫∫

Bcyl

f(r cos θ, r sin θ, z)rdrdθdz.

Spherical:

∫∫∫

B

f(x, y, z)dV =

∫∫∫

Bspher

f(ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ)ρ2 sin φdρdθdφ.

(8) Fundamental Theorem of calculus. If F is an antiderivative of f then
∫ b

a

f(x)dx = F (b)− F (a).

(9) Integral of a conservative field. If f is a differentiable function and C is a curve

with parametrization c(t), t ∈ [a, b], then
∫

C

∇f · dr = f(c(b))− f(c(a)).

(10) Green’s Theorem. If Ω is any reasonable closed and bounded region in R2 and ∂Ω

is the boundary curve of Ω with the “anticlockwise” orientation and F = (P, Q) is a

C1 vector field on Ω then
∫

∂Ω

F · dr =

∫∫

Ω

(
∂Q

∂x
− ∂P

∂y
)dA.

(11) Stokes’ Theorem. If S is an oriented surface in R3 and ∂S is the boundary of S

(a collection of curves) with the induced orientation and F is a C1 vector field on R3

then ∫

∂S

F · dr =

∫∫

S

curl(F) · dS.

(12) Divergence Theorem. If B is a solid region in R3 and ∂B is the boundary surface

of B and F is a C1 vector field on R3 then
∫∫

∂B

F · dS =

∫∫∫

B

div(F)dV.

Note: the statements of these theorems have deliberately been left a little bit vague,

but they apply in all the situations with which we are familiar.
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