
MATH 413 HONORS INTRODUCTION TO ANALYSIS I
PRELIM 1.
SOLUTIONS

(Note: attempt all questions. You have 70 minutes. Good luck!)

(1) (9 marks) Let X = [0, 1] ∪ {3} ⊂ R. State whether the following statements about

X are true or false and give a brief reason in each case.

(a) X is bounded.

Answer: True. For all x ∈ X, |x| ≤ 3, so X is a bounded set.

(b) X can be written as an intersection of countably many open sets.

Answer: True. For example,

X =
∞⋂

n=1

((−1/n, 1 + 1/n) ∪ (3− 1/n, 3 + 1/n)) .

(c) There is a point x0 ∈ X at which the function f(x) = x4 − 3x2 + 4 achieves its

infimum on X (that is, f(x0) = inf{f(x) : x ∈ X}).
Answer: True. Since X is a closed and bounded set, it is compact. The given

function f is continuous, being a polynomial function, and so f achieves its

infimum on X, by a theorem from class.

(2) (25 marks) Let {xn} be a sequence of real numbers.

(a) (3 marks) Define what it means for {xn} to converge to a limit L ∈ R.

Answer: {xn} converges to L if for all ε > 0 there exists n ∈ N such that if

n > N then |xn − L| < ε.

(b) (10 marks) Show that if {xn} converges, then {xn} is bounded.

Answer: Suppose {xn} is a convergent sequence of real numbers. We need to

show that there is a real number B such that |xn| ≤ B for all n ∈ N. Let

L = limn→∞ xn. Taking ε = 1 in the definition of convergence, we see that there

exists N ∈ N such that if n > N then |xn − L| < 1. By the triangle inequality,

|xn| ≤ |xn − L|+ |L| ≤ 1 + |L|



if n > N . Now let B = max{|x1|, |x2|, . . . , |xn|, |L| + 1}. Then if n < N , we

have |xn| ≤ B, and if n > N then |xn| < |L|+1 ≤ B. So for all n ∈ N, |xn| ≤ B

and therefore {xn} is a bounded sequence.

(c) (6 marks) Prove the following theorem using any method you wish:

Theorem: If {xn} converges to L then {x4
n−3x2

n +4} converges to L4−3L2 +4.

Answer: The easiest way to do this is to observe that the function f : R → R

defined by f(x) = x4 + 3x2 + 4 is a continuous function. Therefore, if {xn}
converges to L then {f(xn)} converges to f(L), as required.

(d) (6 marks) Show that the converse of the theorem in part (c) is false.

Answer: The converse is the statement that if {xn} is a sequence of real numbers

and {x4
n − 3x2

n + 4} converges to L4 − 3L2 + 4, then {xn} converges to L. This

is not true. For example, take xn = −1 for all n, and take L = 1.

(3) (16 marks) Sally took an analysis exam and in the final question was asked to prove

the following theorem:

Theorem. If s = sup{x ∈ Q : x2 < 2} then s2 ≥ 2.

Her proof began as follows:

Proof: Suppose for a contradiction that s2 < 2. Let ε = 2 − s2 > 0. By the

Archimedean property of R, there exists n ∈ N such that 2s
n

< ε/2. Choose such an

n which is large enough so that 1
n2 < ε/2. Then

(
s + 1

n

)2
= s2 + 2s

n
+ 1

n2 < s2 + ε . . .

(a) (9 marks) Unfortunately, Sally ran out of time here. Finish her proof of the

theorem.

Answer: . . . = 2. So
(
s + 1

n

)2
< 2. Now, by a theorem from the assignments,

there exists q ∈ Q with s < q < s + 1
n
. Therefore, s2 < q2 <

(
s + 1

n

)2
< 2. So

q ∈ {x ∈ Q : x2 < 2} and q > s. This contradicts the fact that s is supposed to

be an upper bound for the set {x ∈ Q : x2 < 2}. Therefore, we must have s2 ≥ 2.

(b) (7 marks) Prove that s2 = 2.

Answer: One way to do this is to observe that for each n ∈ N, there must be a

point xn ∈ R with xn ∈ {x ∈ Q : x2 < 2} and s − 1
n

< xn < s (indeed, if this

were not the case then s − 1
n

would be an upper bound for {x ∈ Q : x2 < 2}



which was less than s). The sequence {xn} converges to s, and x2
n < 2 for all n.

Therefore, by properties of limits, we have

s2 = ( lim
n→∞

xn)2 = lim
n→∞

x2
n ≤ 2.

So s2 ≤ 2, and we have shown above that s2 ≥ 2. Therefore, s2 = 2.

[END OF PAPER]


